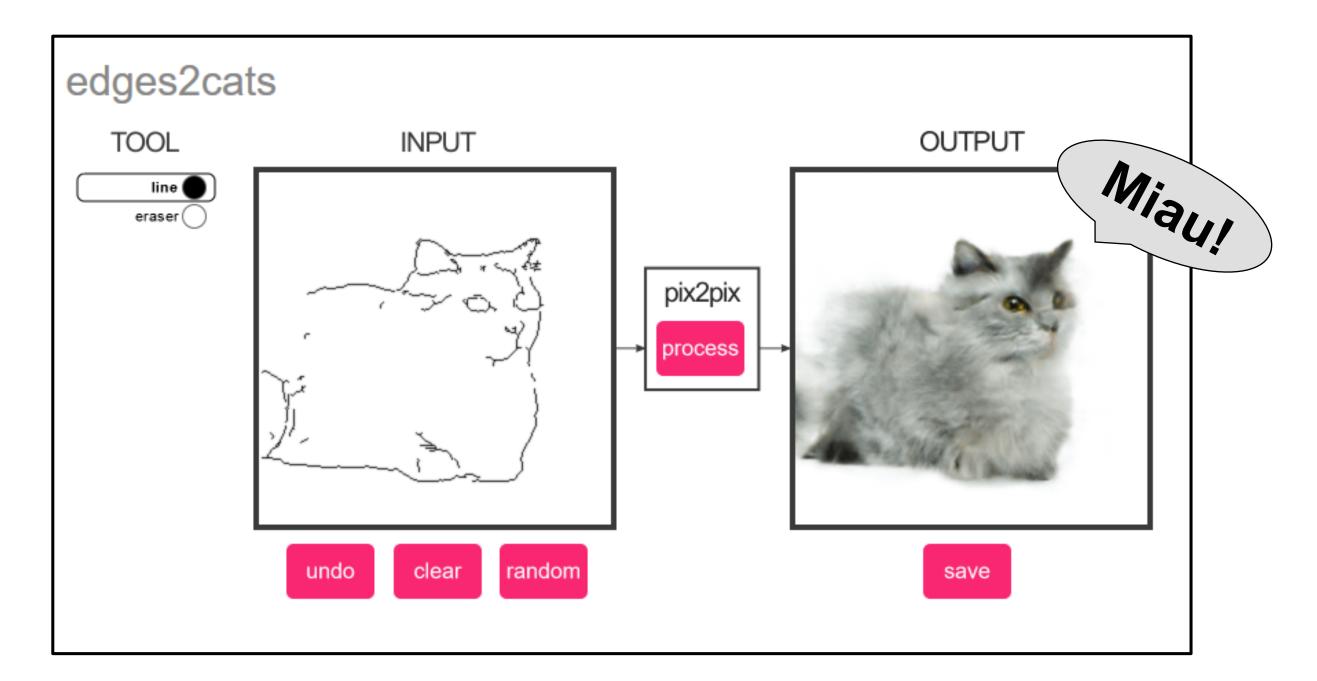
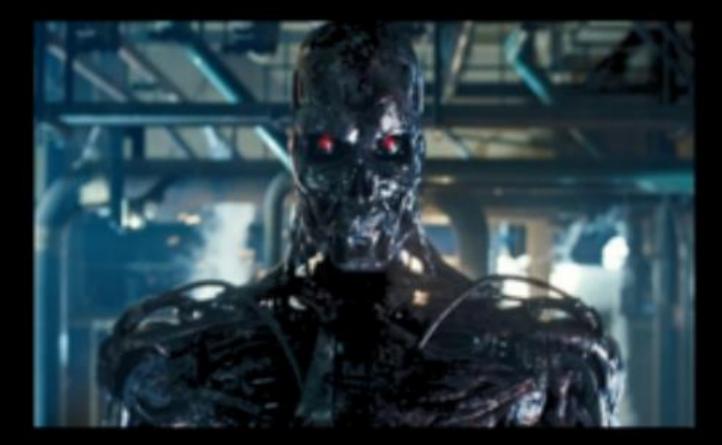
Conditional Adversarial Networks (or "mapping from A to B")

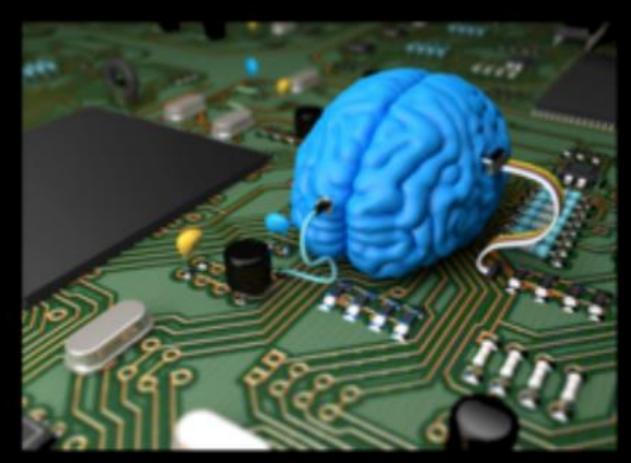


- CS448V Computational Video Manipulation
 - May 22th, 2019

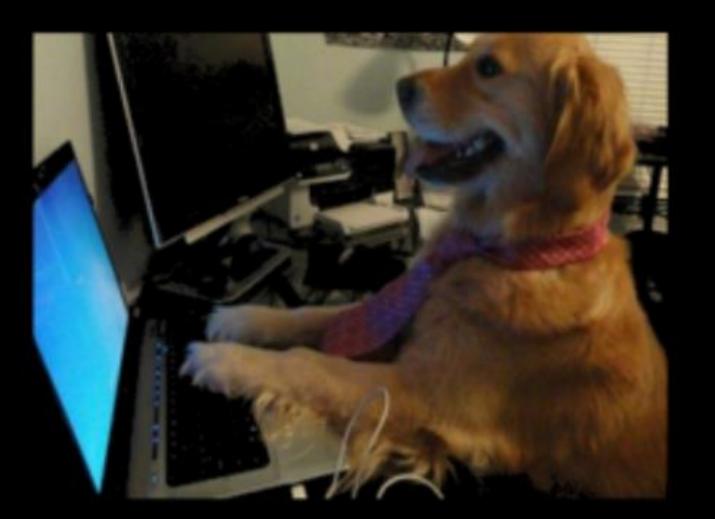
Deep Learning



What society thinks I do



What my friends think I do



What mathematicians think I do

What other computer scientists think I do

In [1]:

import keras

Using TensorFlow backend.

What I think I do

What I actually do

Why? - Cool! Trendy! - Google Scholar

TITLE

Generative adversarial nets

I Goodfellow, J Pouget-Abadie, M Mirza, B Xu, D Warde-Farley, S Advances in neural information processing systems, 2672-2680

Image-to-image translation with conditional adversaria

P Isola, JY Zhu, T Zhou, AA Efros Proceedings of the IEEE conference on computer vision and patter

Unpaired image-to-image translation using cycle-cons

JY Zhu, T Park, P Isola, AA Efros Proceedings of the IEEE international conference on computer visi

and follow-up works

	CIT	ED BY	YEAR
Ozair,		8405	2014
al networks	Pix2Pix	2137	2017
ern sistent adversarial networks	CycleGAN	1722	2017
sion, 2223-2232			

- Hundreds of applications

Why? - Cool! Trendy! - Google Scholar

Hundreds of applications and follow-up works

"Generative Adversarial Networks is the **most interesting idea in the last ten years** in machine learning." Yann LeCun, Director, Facebook Al

Enhancing Transitions

Neural Rerendering in the Wild

Moustafa Meshry¹, Dan B Goldman², Sameh Khamis², Hugues Hoppe², Rohit Pandey², Noah Snavely², Ricardo Martin-Brualla²

¹University of Maryland, ²Google Inc.

Single-Photo Facial Animation

Warp-Guided GANs for Single-Photo Facial Animation

Jiahao Geng Tianjia Shao Youyi Zheng Yanlin Weng Kun Zhou

State Key Lab of CAD&CG, Zhejiang University

ZJU-FaceUnity Joint Lab of Intelligent Graphics

Text-based Editing

Adding New Words

Original Video

I love the smell of napalm in the morning.

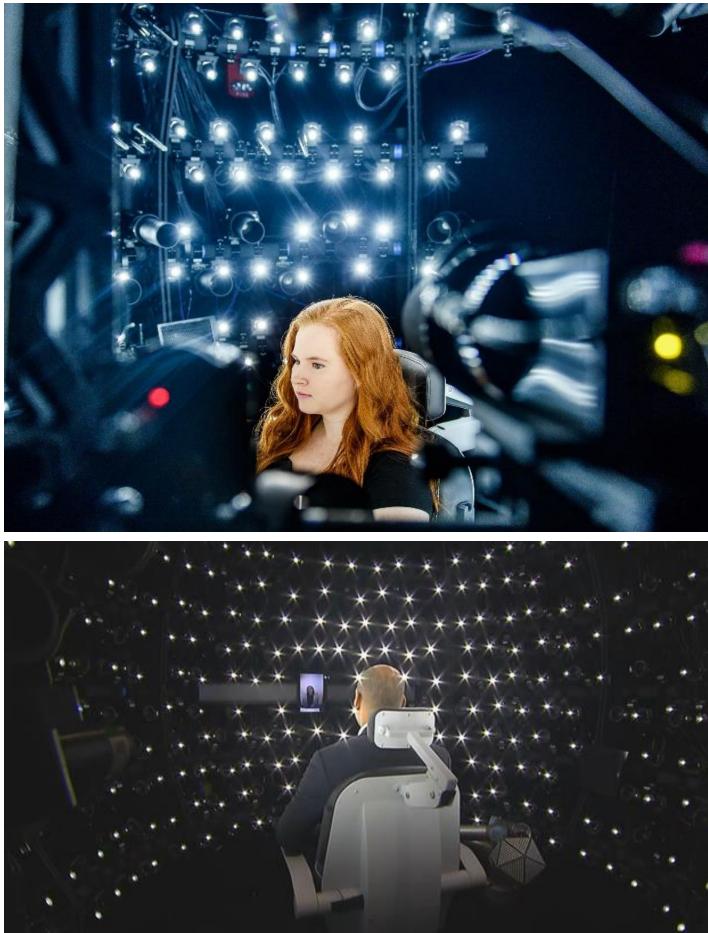
Few-Shot Adversarial Learning of Realistic Neural Talking Head models

Egor Zakharov^{1,2} Aliaksandra Shysheya^{1,2} Egor Burkov^{1,2} Victor Lempitsky^{1,2} ²Skolkovo Institute of Science and Technology ¹Samsung Research

Source

Few-Shot Reenactment

Generated images



Digital Humans



facebook Reality Labs

Overview

Convolutional Neural Networks

Generative Modeling

• Pix2Pix ("mapping from A to B")

$(f*g)(t) \triangleq \int_{-\infty}^{\infty} f(\tau)g(t-\tau) \, d au.$

2014

2015

(Brundage et al, 2018)

2017

edges2cats Miaur TOOL OUTPU⁻ INPUT line eraser pix2pix And the second Lini undo clear random

Components?

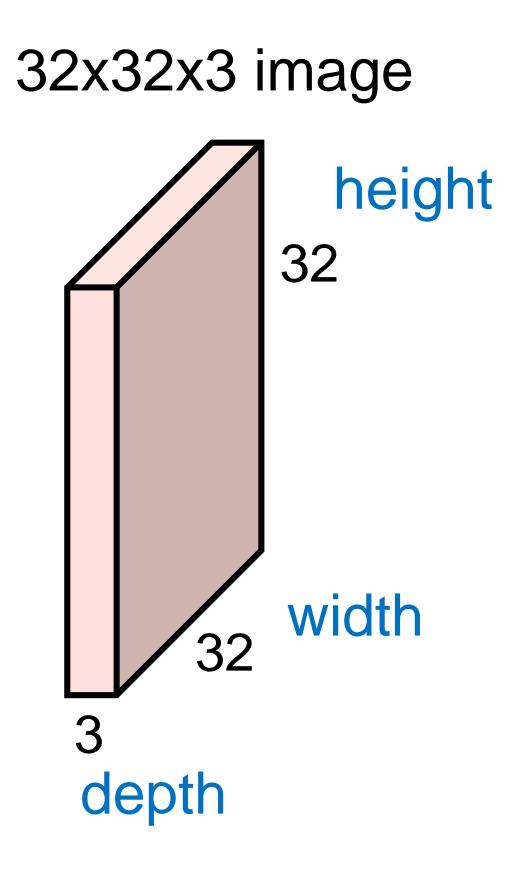
- 2D Convolution Layers (Conv2D)
- Subsampling Layers (MaxPool, ...)
- Non-linearity Layers (ReLU, ...)
- Normalization Layers (BatchNorm, ...)
- Upsampling Layers (TransposedConv, ...)

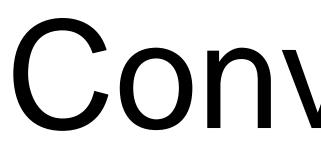
Components?

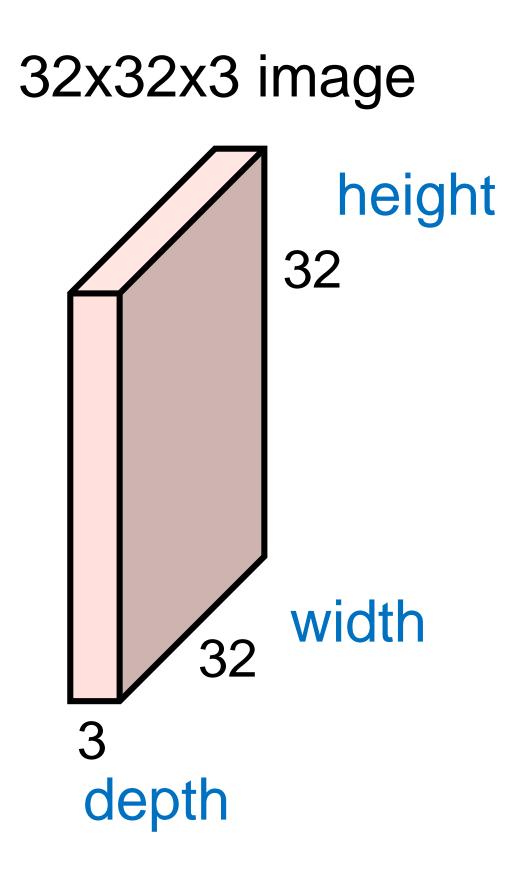
2D Convolution Layers (Conv2D)

- Subsampling Layers (MaxPool, ...)
- Non-linearity Layers (ReLU, ...)
- Normalization Layers (BatchNorm, ...)
- Upsampling Layers (TransposedConv, ...)

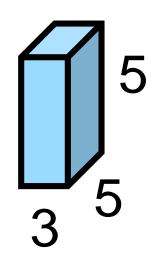
Convolution







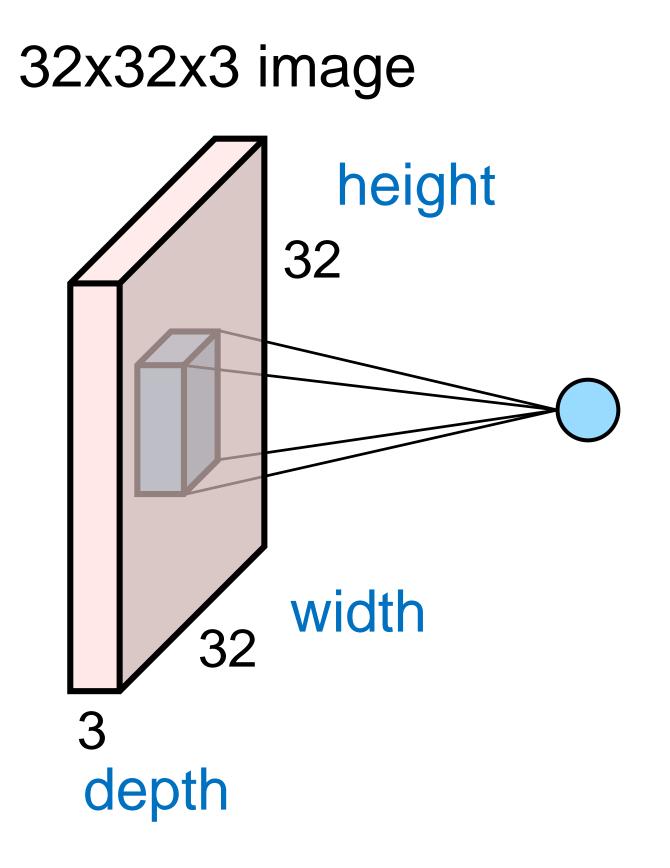
5x5x3 filter



Convolution

Convolve the filter with the image, i.e., "slide over the image spatially, computing dot products"

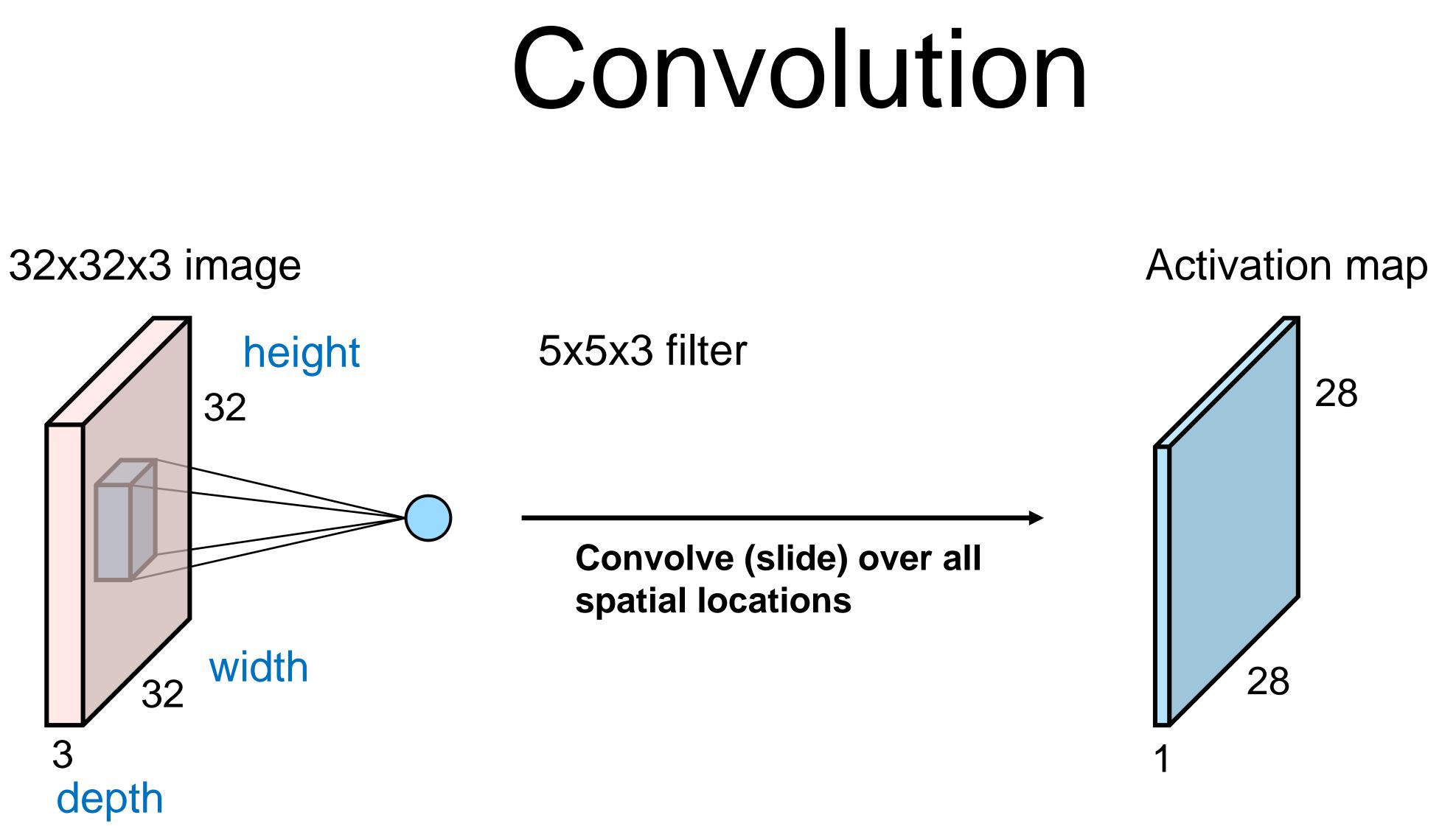
Convolution

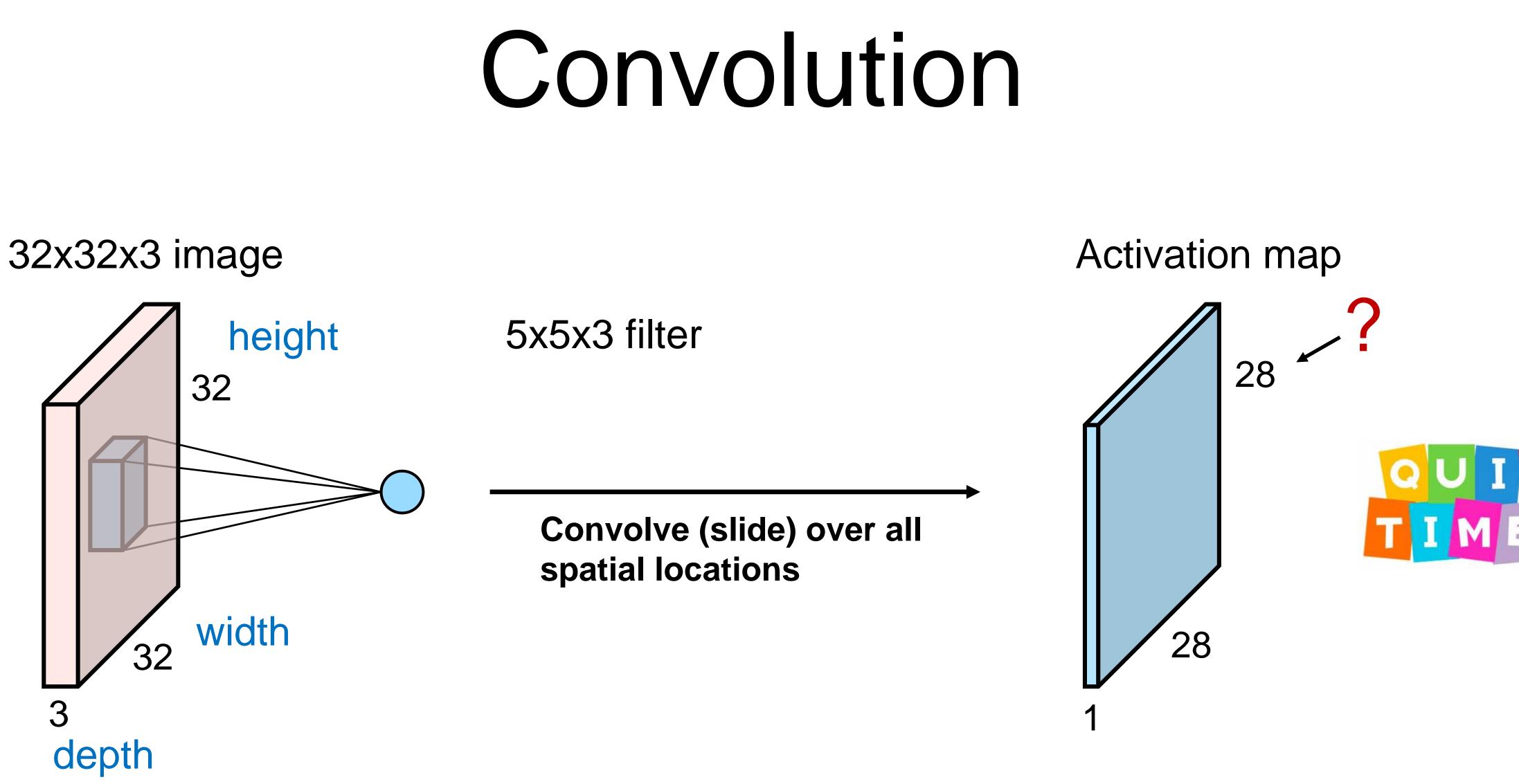


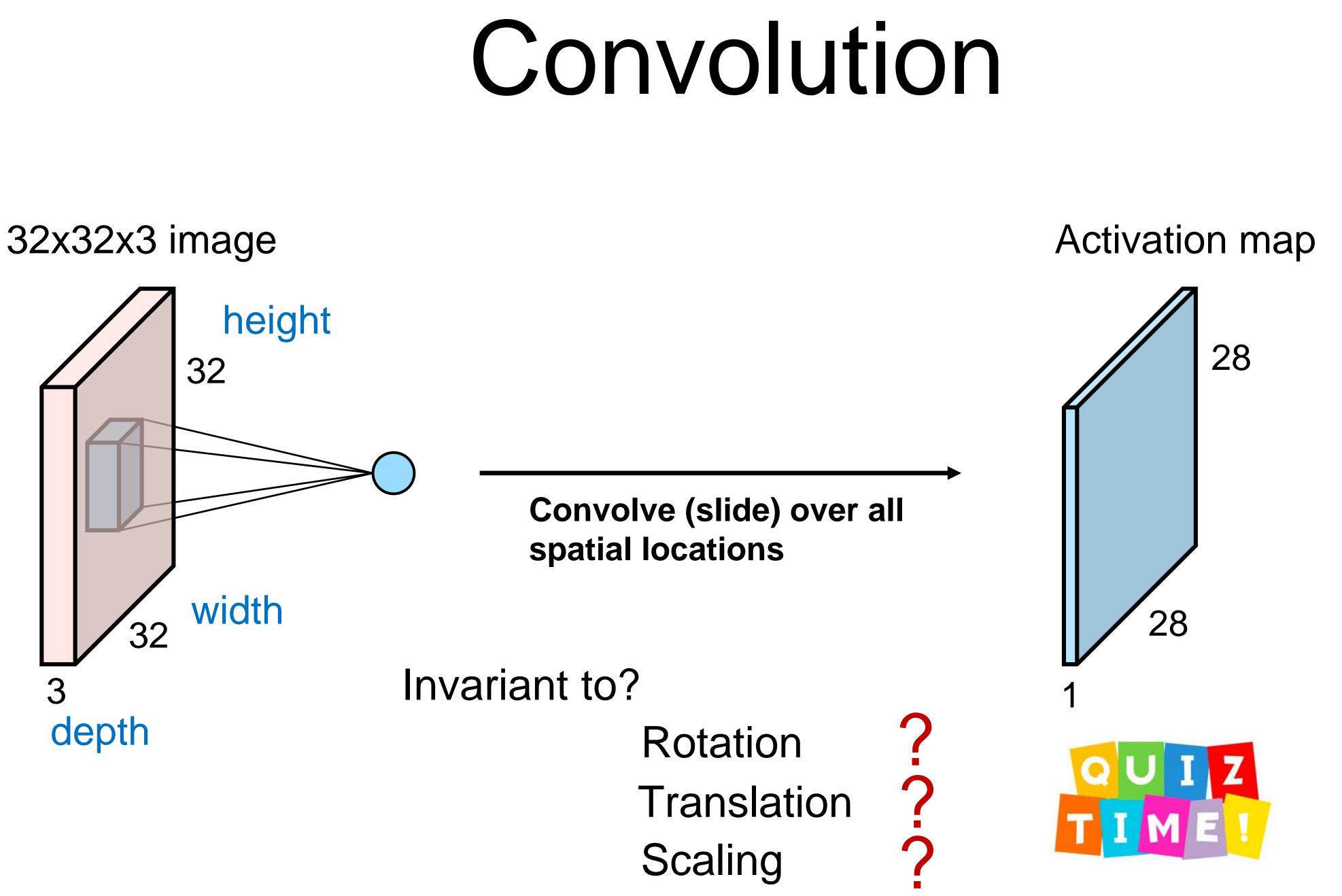
5x5x3 filter

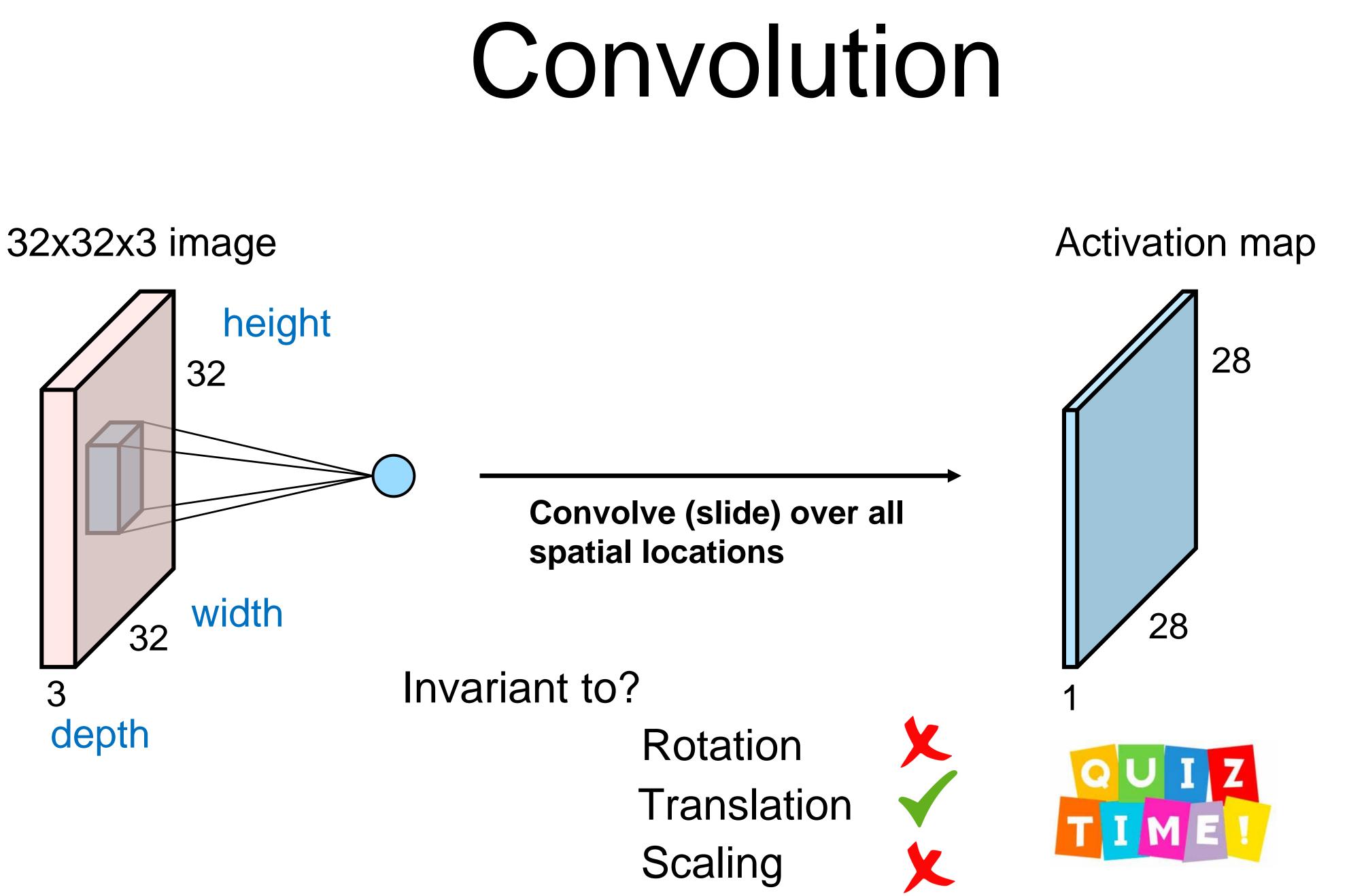
Result: 1 number, the result of taking the dot product between the filter and a small 5x5x3 chunk of the image, i.e., 5x5x3 = 70-dimensional dot product + bias

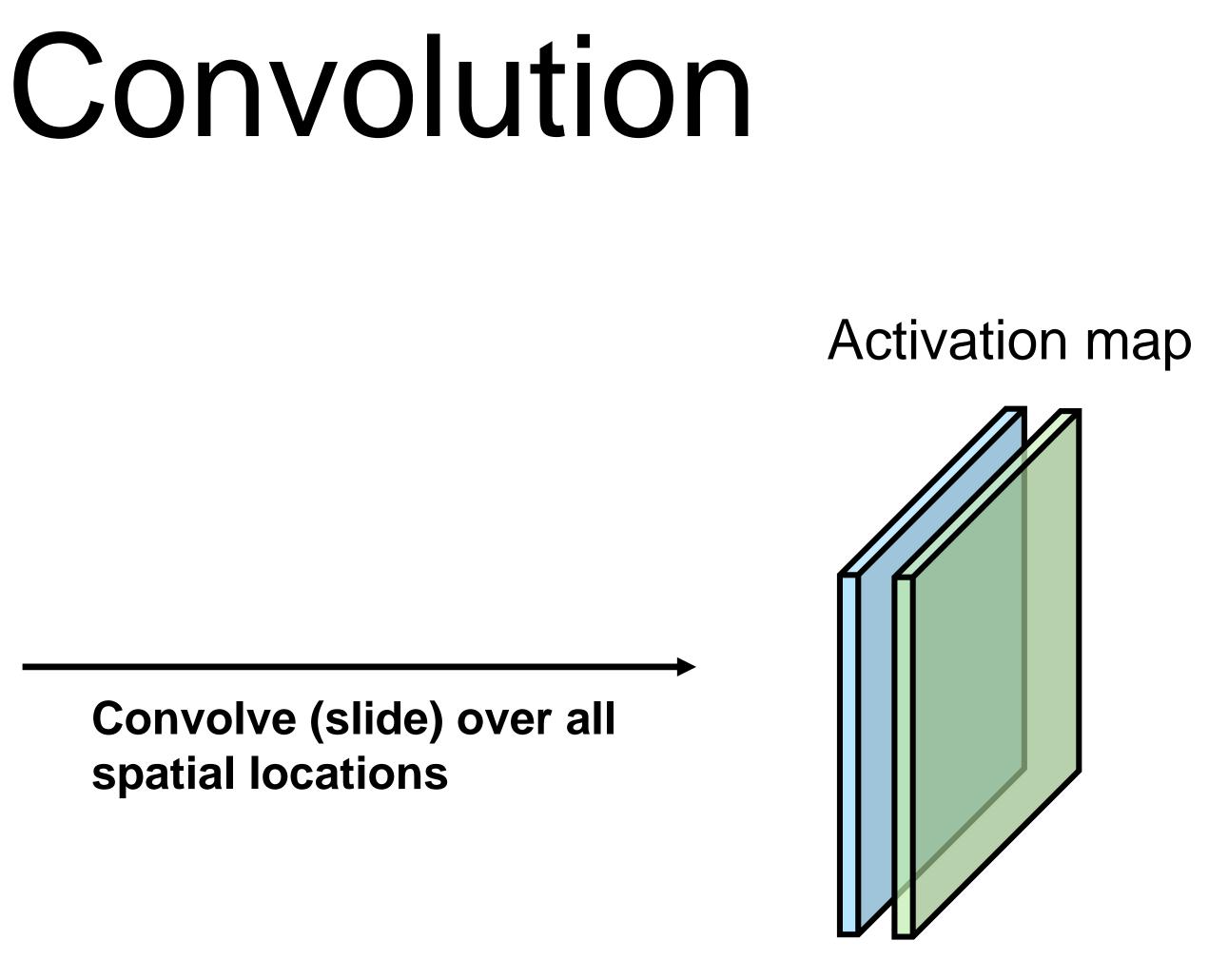
 $w^{T}x + b$

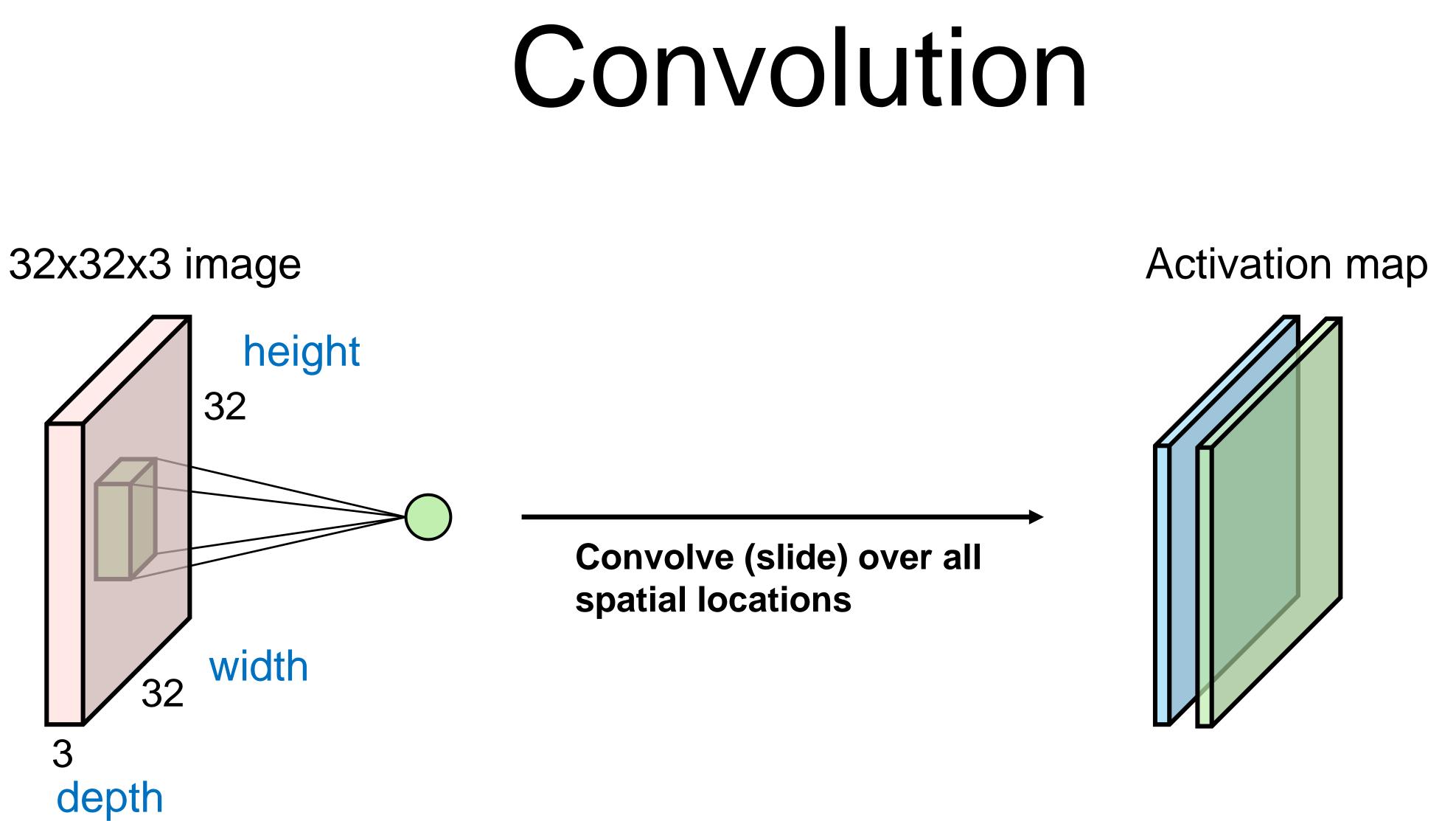




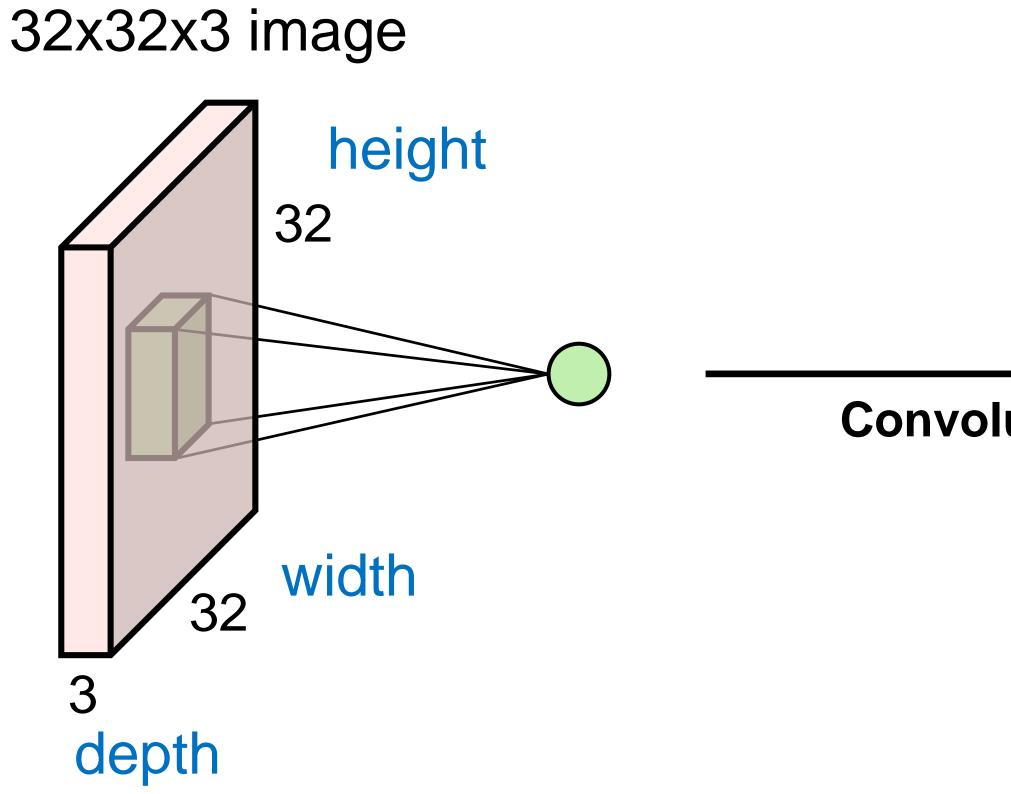




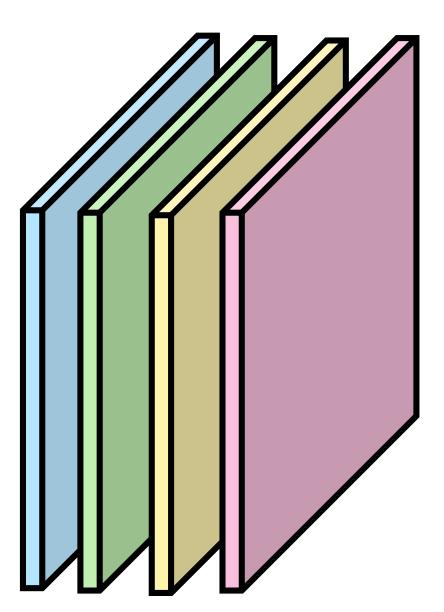




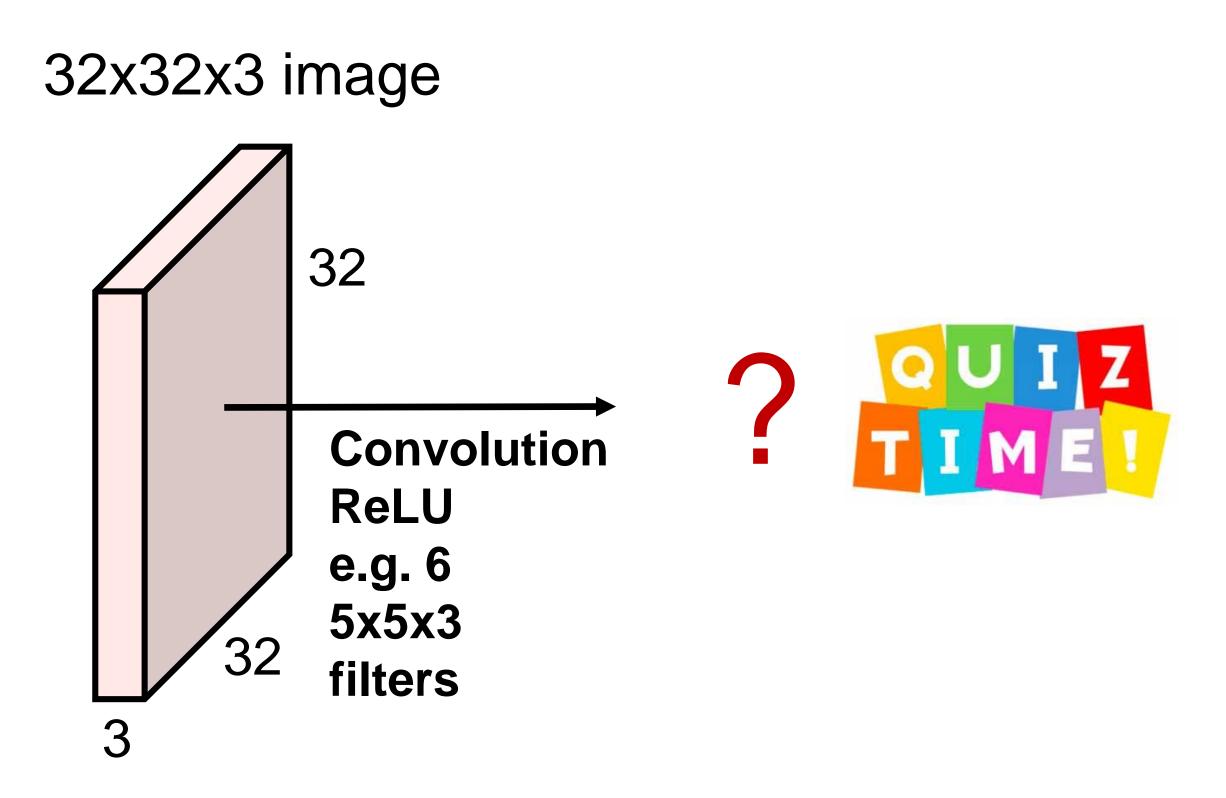
Convolution Layer

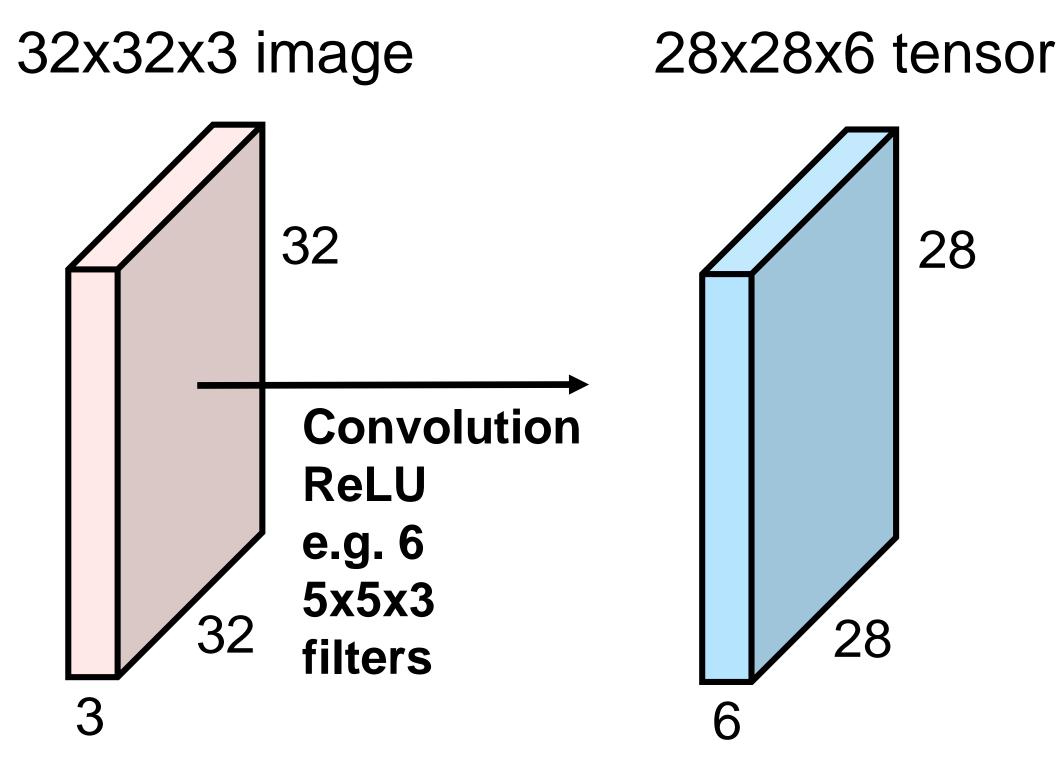


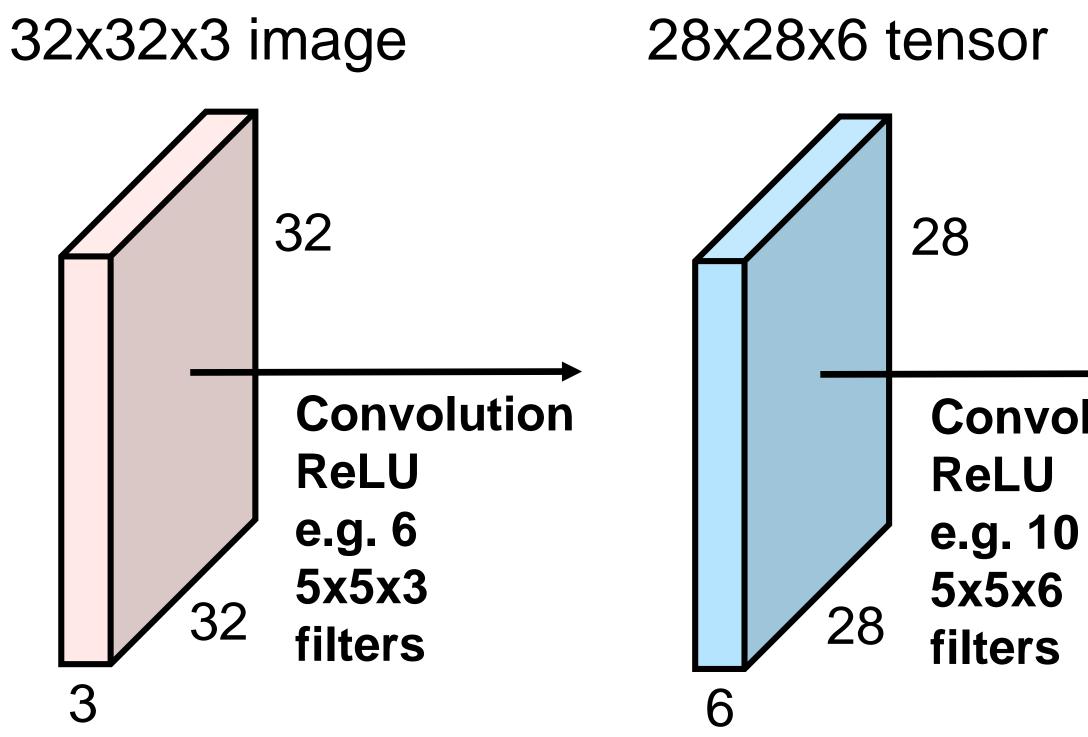
Activation tensor

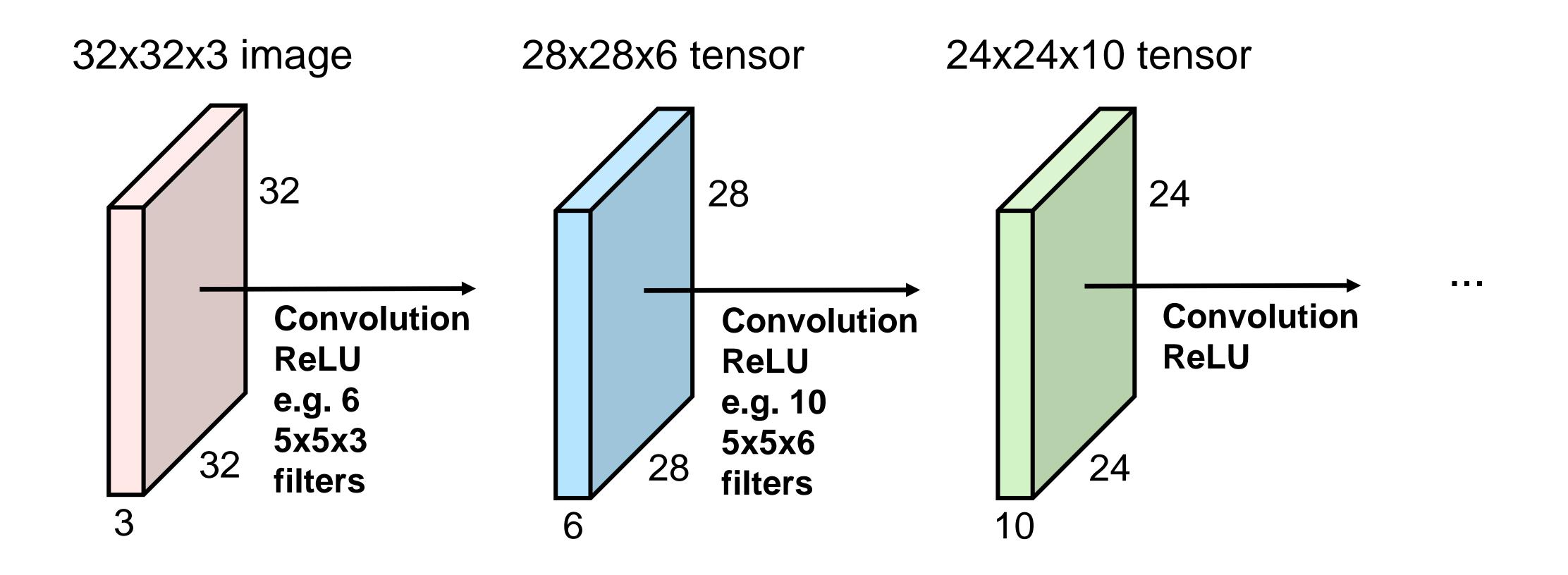


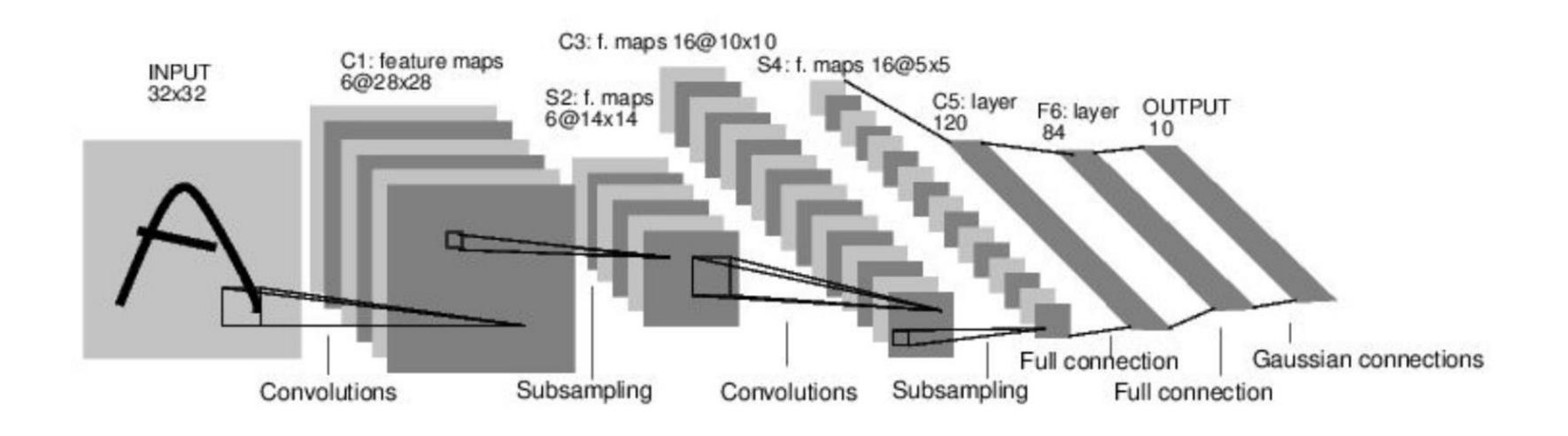
Convolution Layer



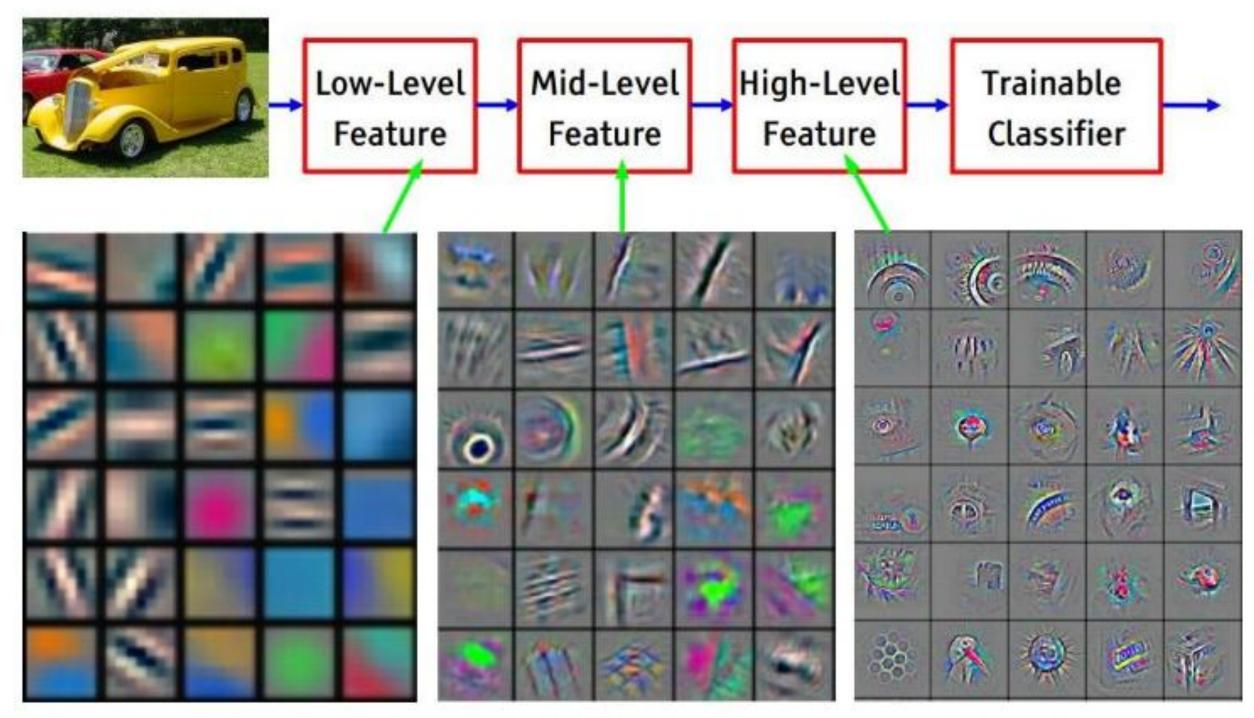








[LeNet-5, LeCun 1980]

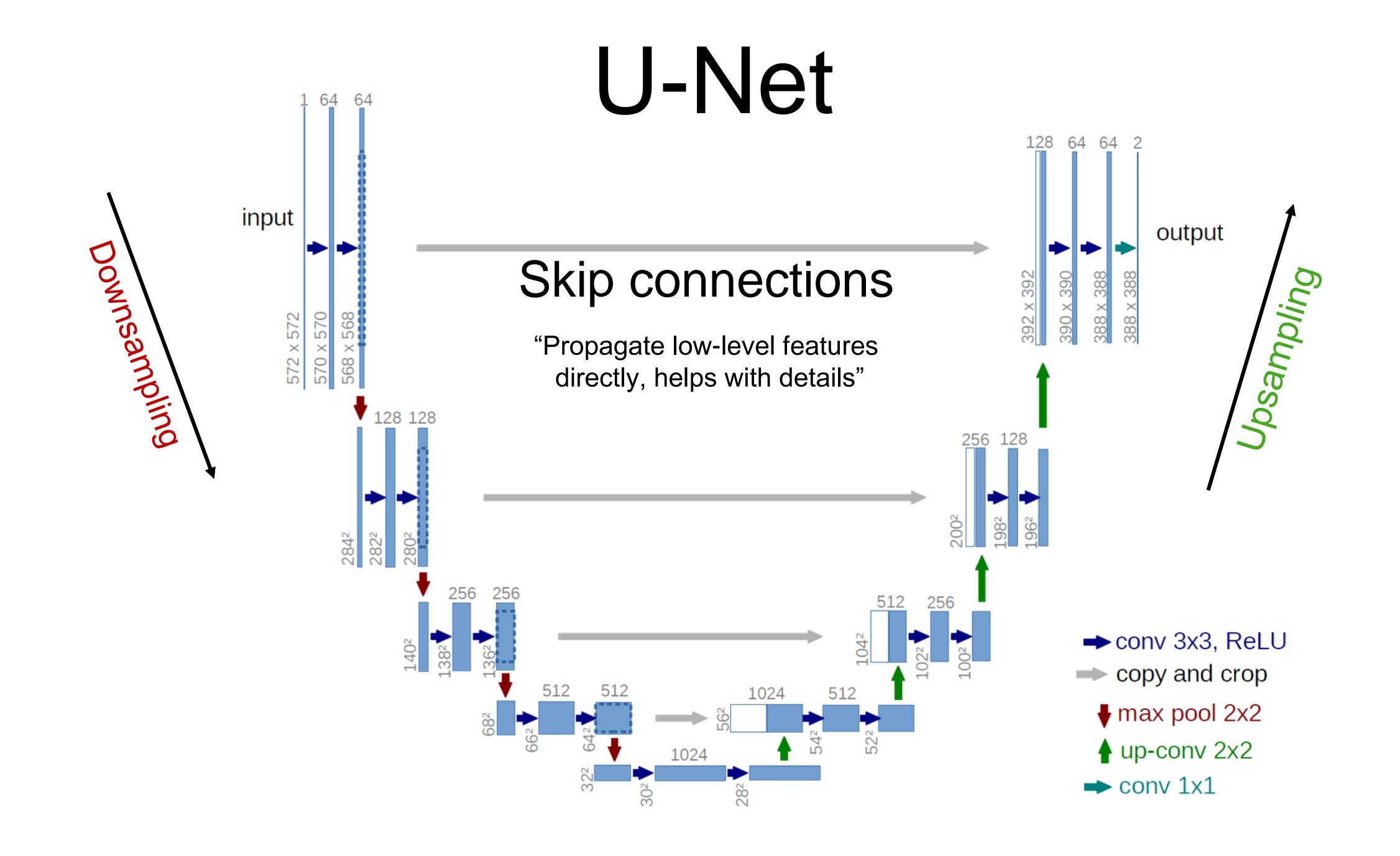


Learn the features from data instead of hand engineering them! (If enough data is available)

Feature Hierarchy

[From recent Yann LeCun slides]

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



Overview

Convolutional Neural Networks

Generative Modeling

• Pix2Pix

$(f*g)(t) riangleq \int_{-\infty}^{\infty} f(au)g(t- au) \, d au.$

2014

(Brundage et al, 2018)

edges2cats Miaur TOOL OUTPU⁻ INPUT line eraser pix2pix And the second Lind undo clear random

Overview

Convolutional Neural Networks

Generative Modeling

• Pix2Pix

$(f * g)(t) \triangleq \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau.$

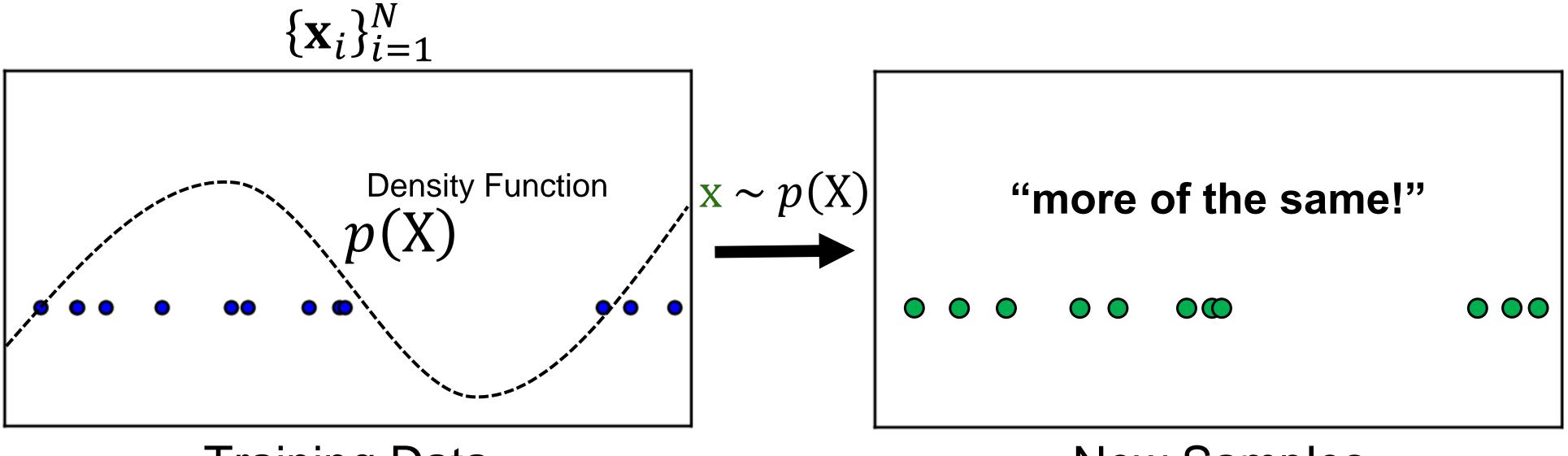
2014

2015

(Brundage et al, 2018)

edges2cats Miaur TOOL OUTPU⁻ INPUT line 🔵 eraser 🔿 pix2pix process And the second Lind undo clear random

Generative Modeling



Training Data

We want to learn p(X) from data, such that we can "sample from it"!

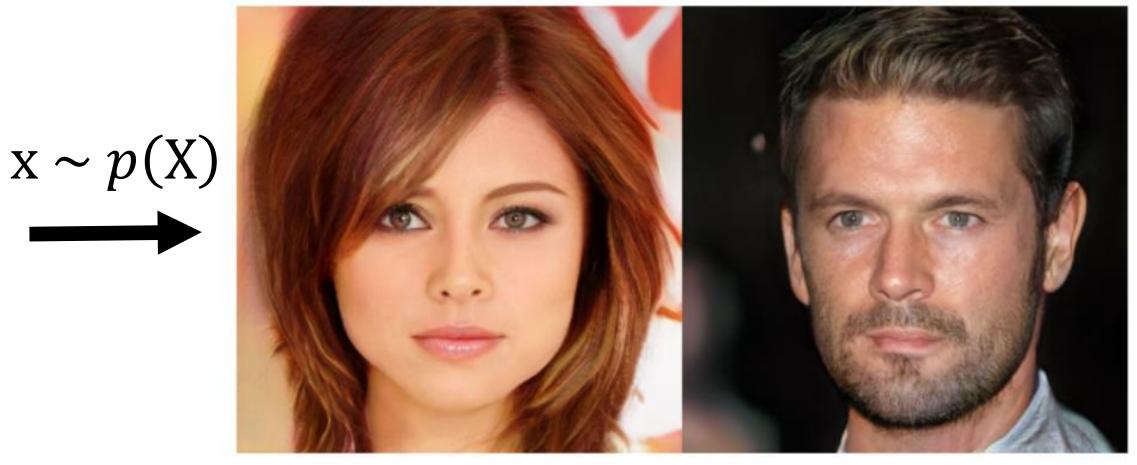
New Samples

Generative 2D Face Modeling

 $\{\mathbf{x}_i\}_{i=1}^N$

Training Data

The world needs more celebrities ... or not ... ?



New Samples

3.5 Years of Progress on Faces

2015

2017

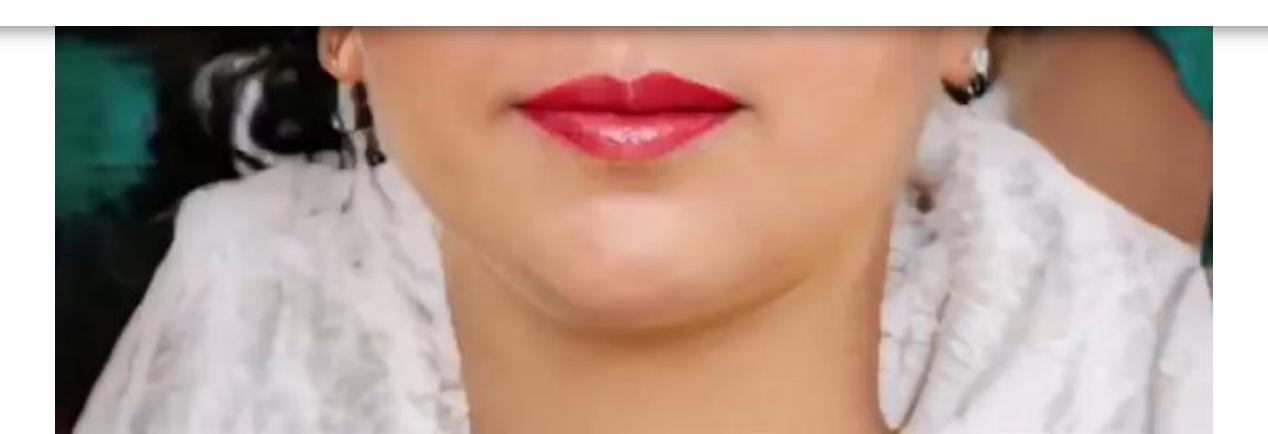
(Brundage et al, 2018)

https://thispersondoesnotexist.com

A Style-Based Generator Architecture for Generative Adversarial Networks

Tero Karras NVIDIA

tkarras@nvidia.com



Samuli Laine **NVIDIA** slaine@nvidia.com

Timo Aila **NVIDIA**

taila@nvidia.com

2018

StyleGAN - Interpolation

Overview

Convolutional Neural Networks

Generative Modeling

• Pix2Pix ("mapping from A to B")

$(f*g)(t) \triangleq \int_{-\infty}^{\infty} f(\tau)g(t-\tau) \, d au.$

2014

2015

(Brundage et al, 2018)

2017

edges2cats Miaur TOOL OUTPU⁻ INPUT line 🔵 eraser 🔿 pix2pix process And the second Lini undo clear random

Overview

Convolutional Neural Networks

Generative Modeling

Pix2Pix ("mapping from A to B")

$(f*g)(t) \triangleq \int_{-\infty}^{\infty} f(\tau)g(t-\tau) \, d au.$

2014

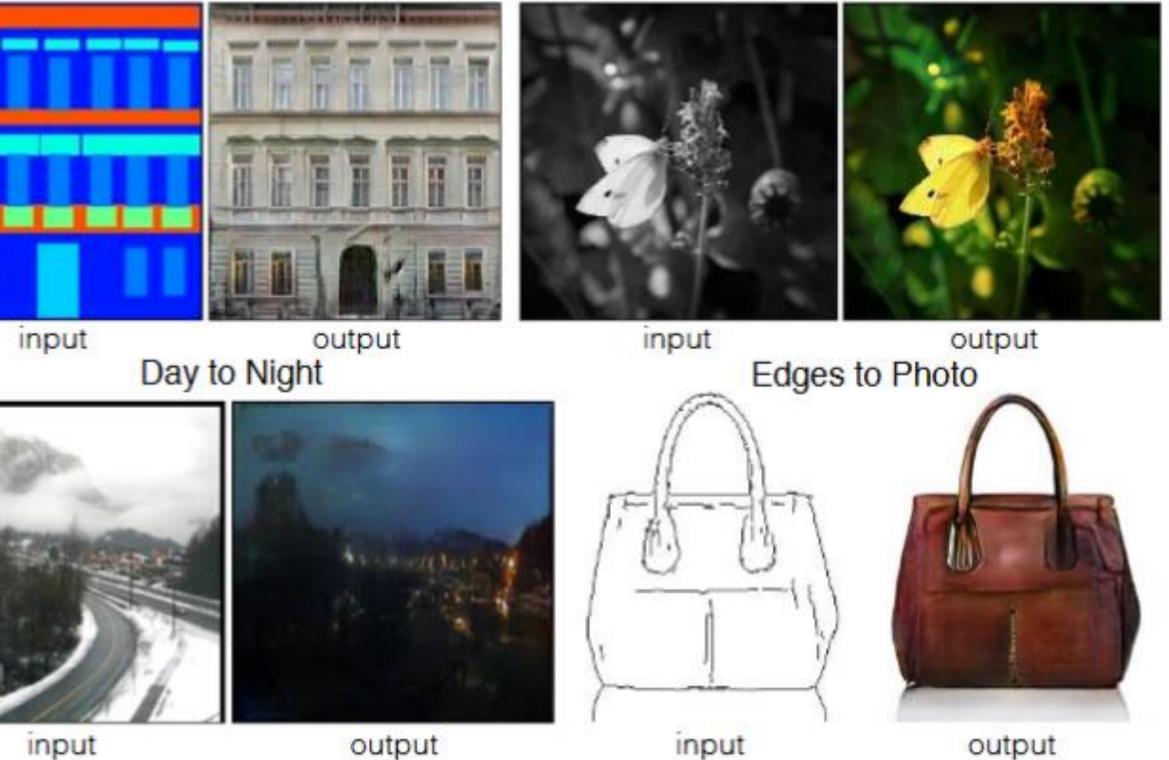
2015

(Brundage et al, 2018)

2017

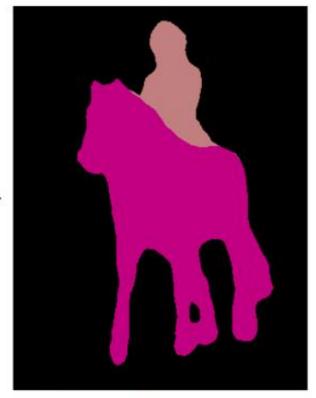
edges2cats Miaur TOOL OUTPU⁻ INPUT line 🔵 eraser 🔿 pix2pix And the second undo clear random

Image-to-Image Translation with Conditional Adversarial Networks Phillip Isola Jun-Yan Zhu Tinghui Zhou Alexei A. Efros Berkeley AI Research (BAIR) Laboratory, UC Berkeley {isola, junyanz, tinghuiz, efros}@eecs.berkeley.edu Labels to Street Scene Labels to Facade BW to Color output input Aerial to Map input output input Edges to Photo Day to Night input output input input output



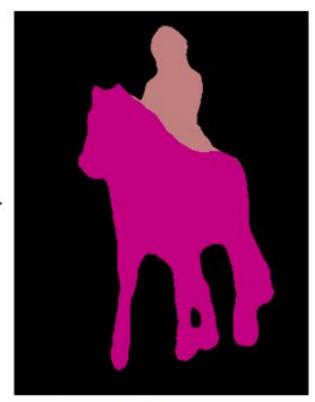
Object labeling





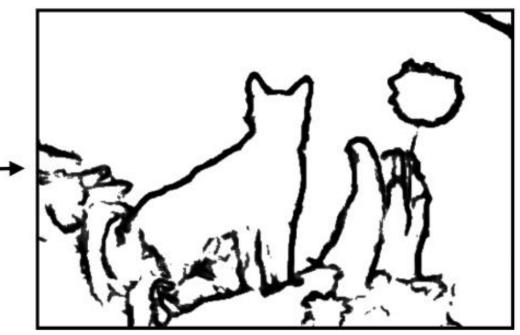
[Long et al. 2015]

Object labeling



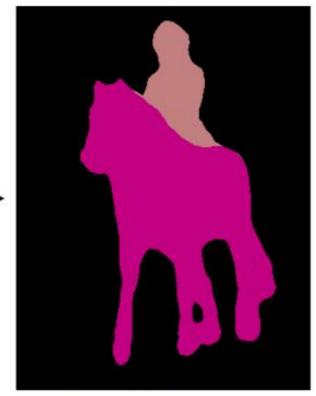
[Long et al. 2015]

Edge Detection



[Xie et al. 2015]

Object labeling

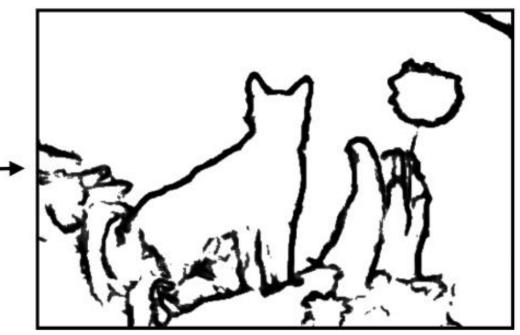


[Long et al. 2015]

Season change

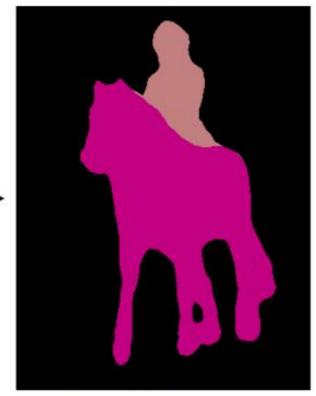
[Laffont et al. 2014]

Edge Detection



[Xie et al. 2015]

Object labeling

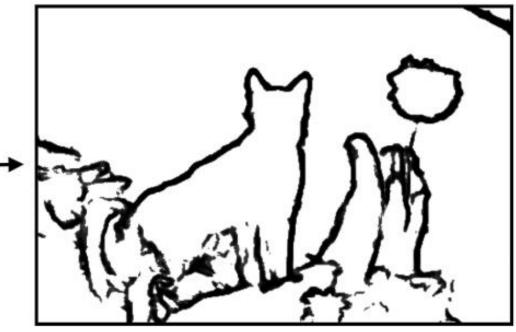


[Long et al. 2015]

Season change

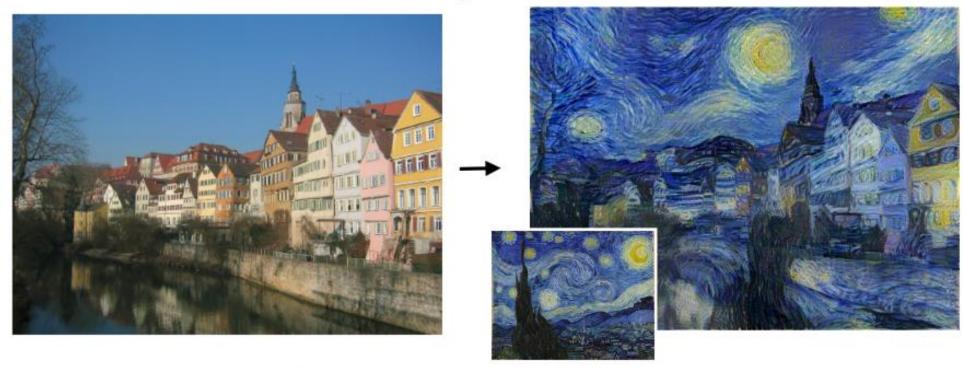
[Laffont et al. 2014]

Edge Detection



[Xie et al. 2015]

Artistic style transfer



[Gatys et al. 2016]

G

Input X

G

Output y

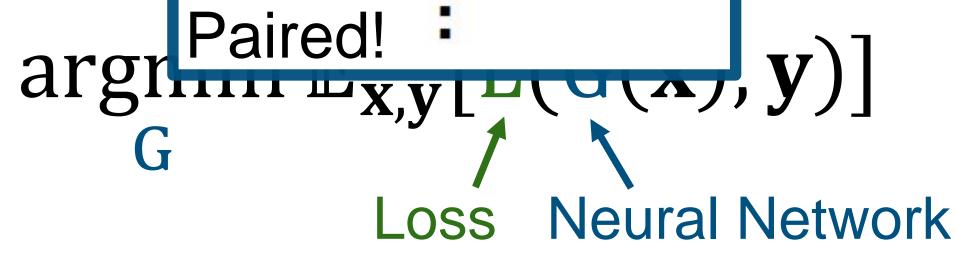
 $\operatorname{argmin} \mathbb{E}_{\mathbf{x},\mathbf{y}}[L(\mathbf{G}(\mathbf{x}),\mathbf{y})]$ Loss Neural Network

Input X

X

Paired! G

Training data y



G

Input X

G

Output y

 $\operatorname{argmin} \mathbb{E}_{\mathbf{x},\mathbf{y}}[L(\mathbf{G}(\mathbf{x}),\mathbf{y})]$ Loss Neural Network

G

Input X



U

Output y

 $\operatorname{argmin} \mathbb{E}_{\mathbf{x},\mathbf{y}}[L(G(\mathbf{x}),\mathbf{y})]$ "What should I do?" Neural Network

G

Input X



"What should I do?"

Output y

 $\operatorname{argmin} \mathbb{E}_{\mathbf{x},\mathbf{y}}[L(\mathbf{G}(\mathbf{x}),\mathbf{y})]$ "**How** should I do it?"

Be careful what you wish for!

Input

$L(\hat{\mathbf{y}},\mathbf{y}) =$

Output

Ground truth

$$= \|\hat{\mathbf{y}} - \mathbf{y}\|_{2}^{2}$$

Degradation to the mean!

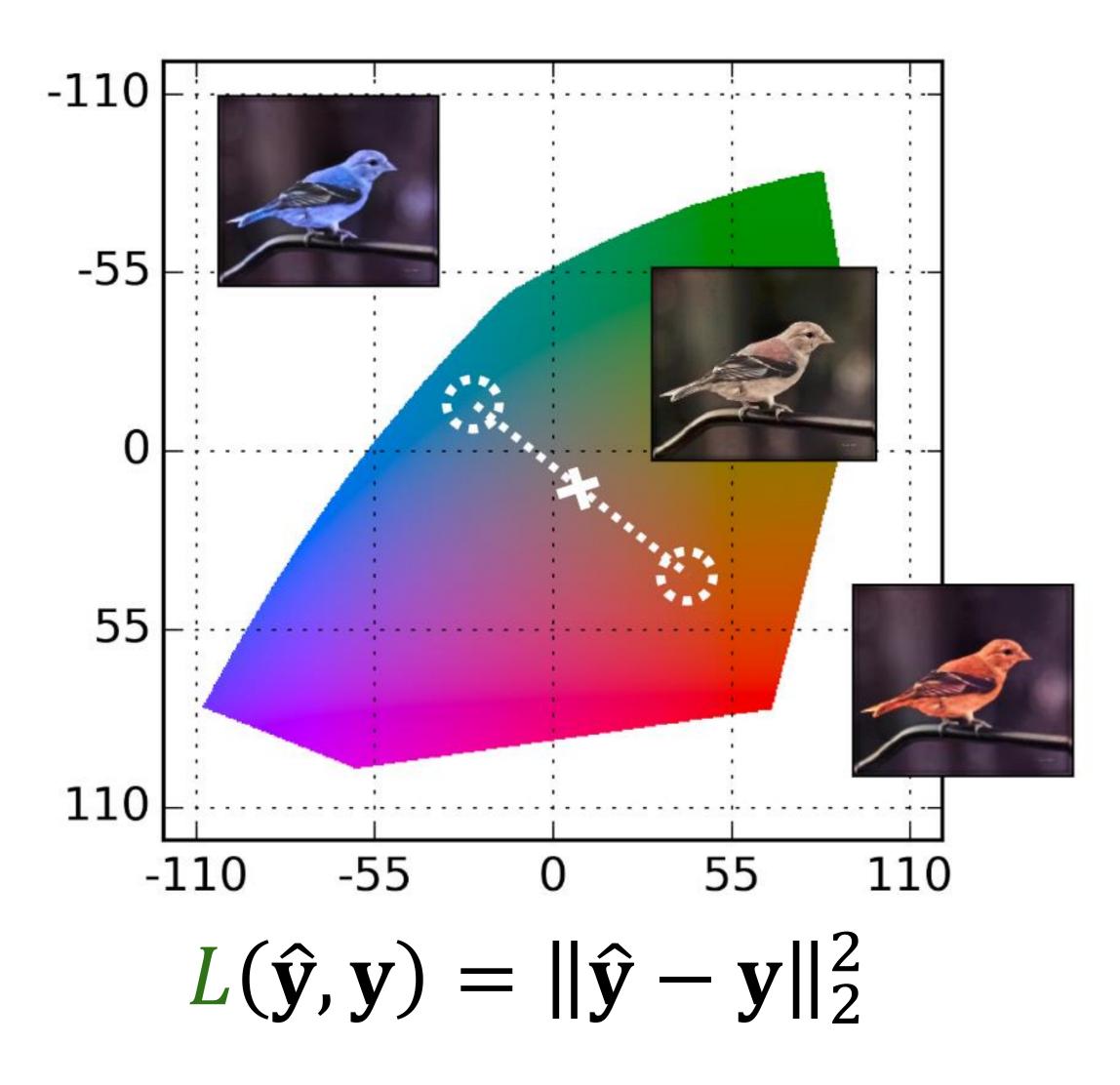
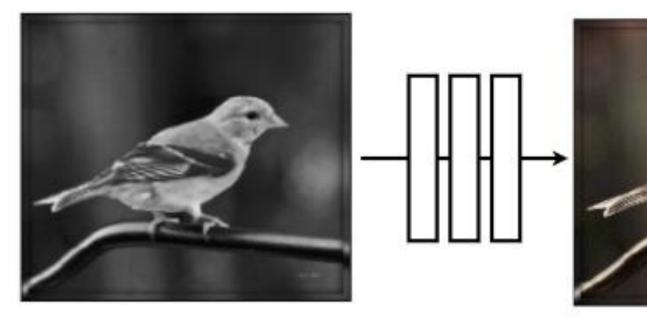
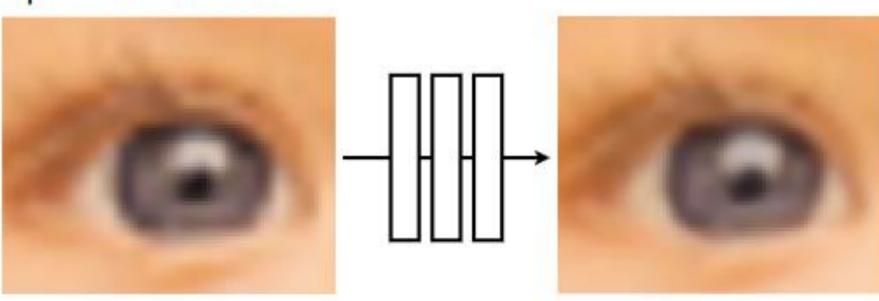


Image colorization



[Zhang, Isola, Efros, ECCV 2016]

Super-resolution

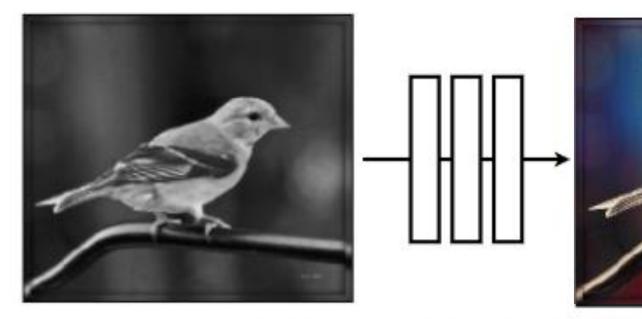


[Johnson, Alahi, Li, ECCV 2016]

L2 regression

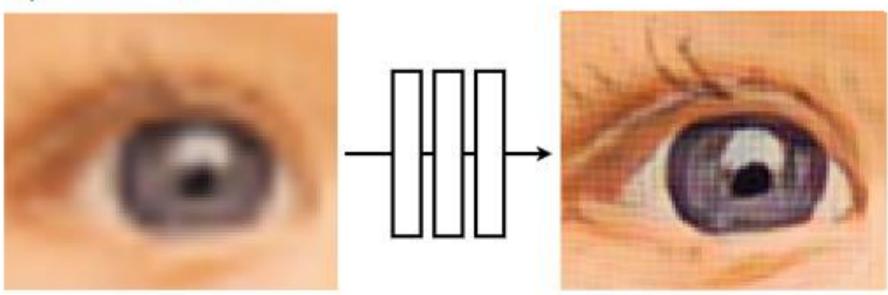
L2 regression

Image colorization



[Zhang, Isola, Efros, ECCV 2016]

Super-resolution

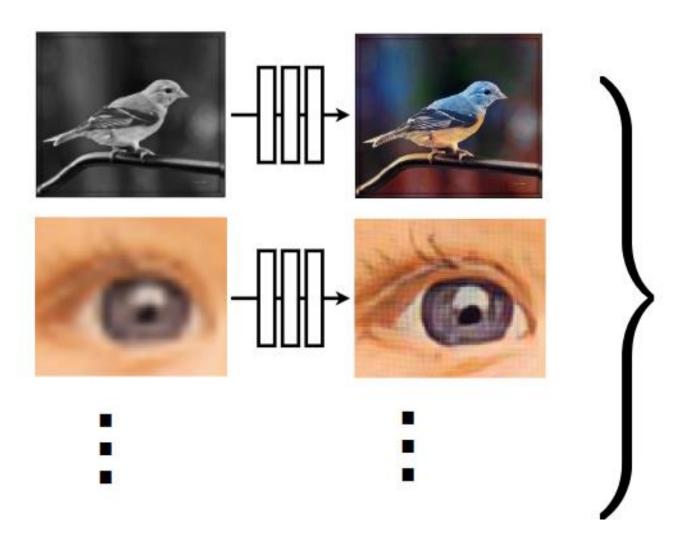


[Johnson, Alahi, Li, ECCV 2016]

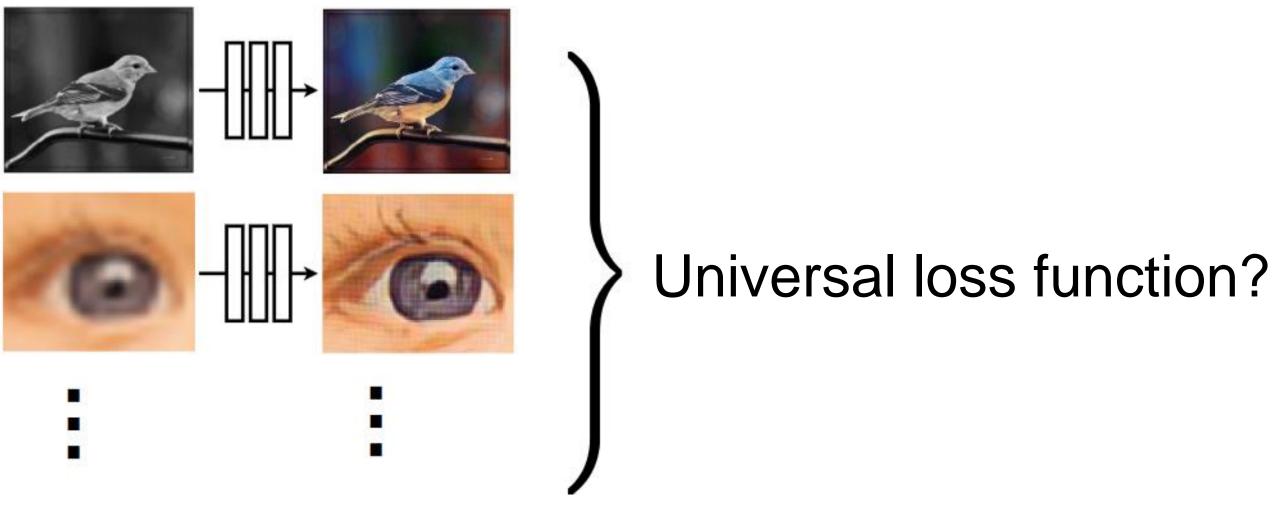
Cross entropy objective, with colorfulness term

Deep feature covariance matching objective

Deep learning got rid of handcrafted features. Can we also get rid of handcrafting the loss function?

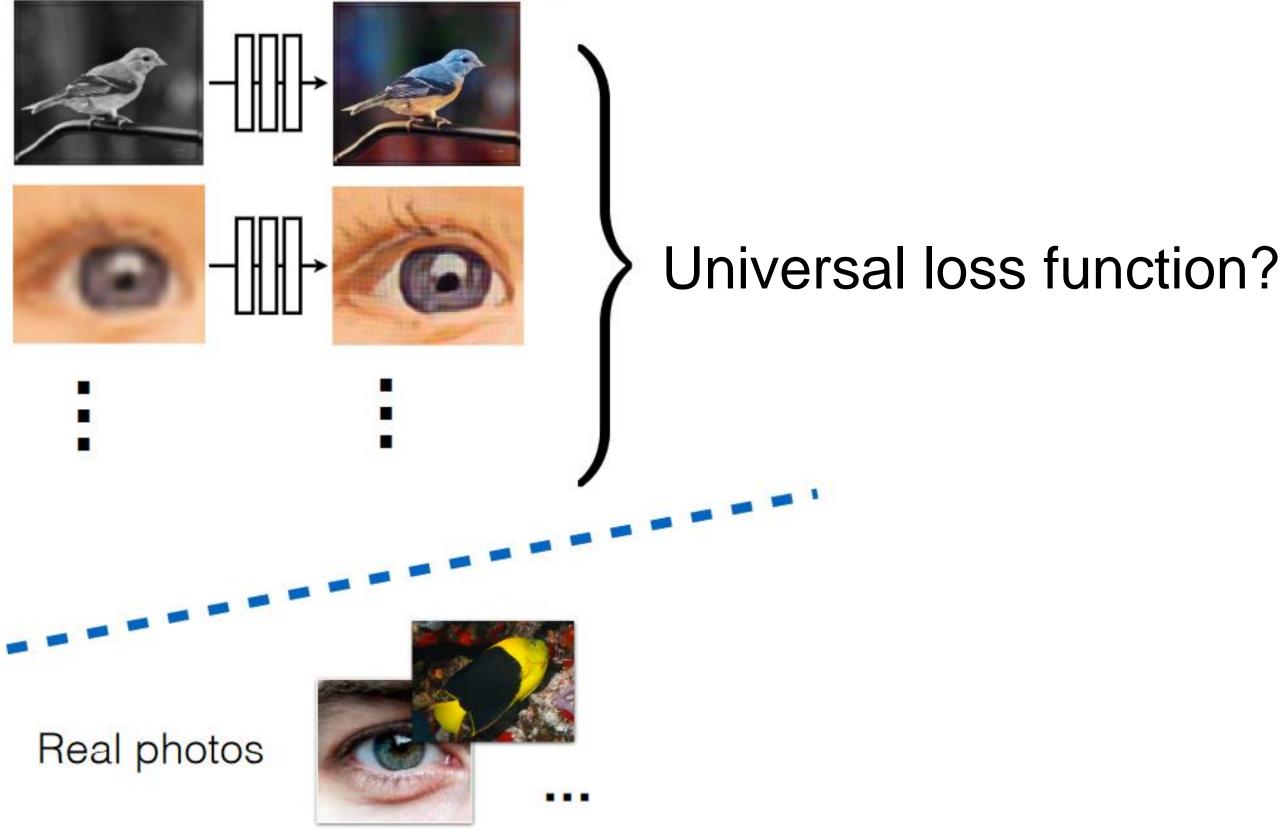


Deep learning got rid of handcrafted features. Can we also get rid of handcrafting the loss function?

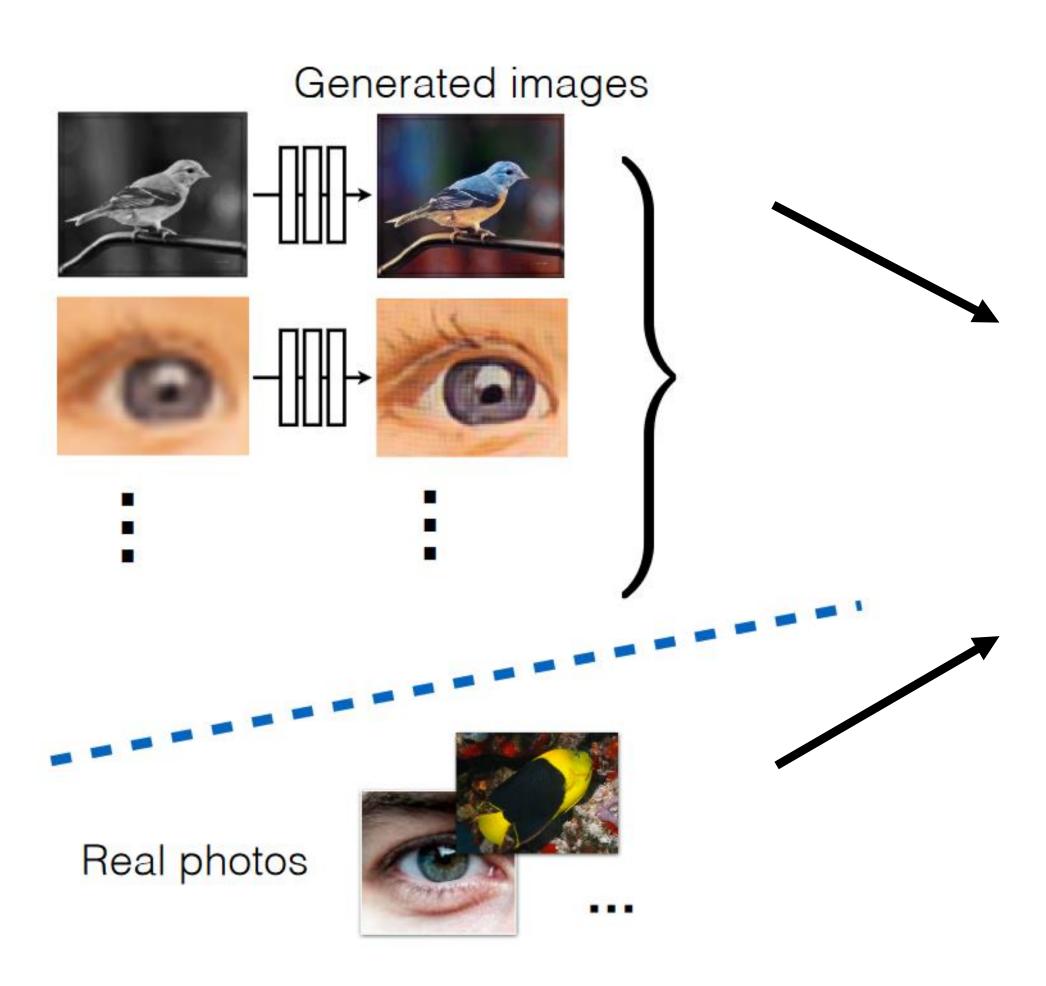


Deep learning got rid of handcrafted features. Can we also get rid of handcrafting the loss function?

Generated images



Discriminator as a Loss Function



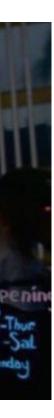
Discriminator (Classifier)

Real or Fake?

YOU DON'T NEED TO

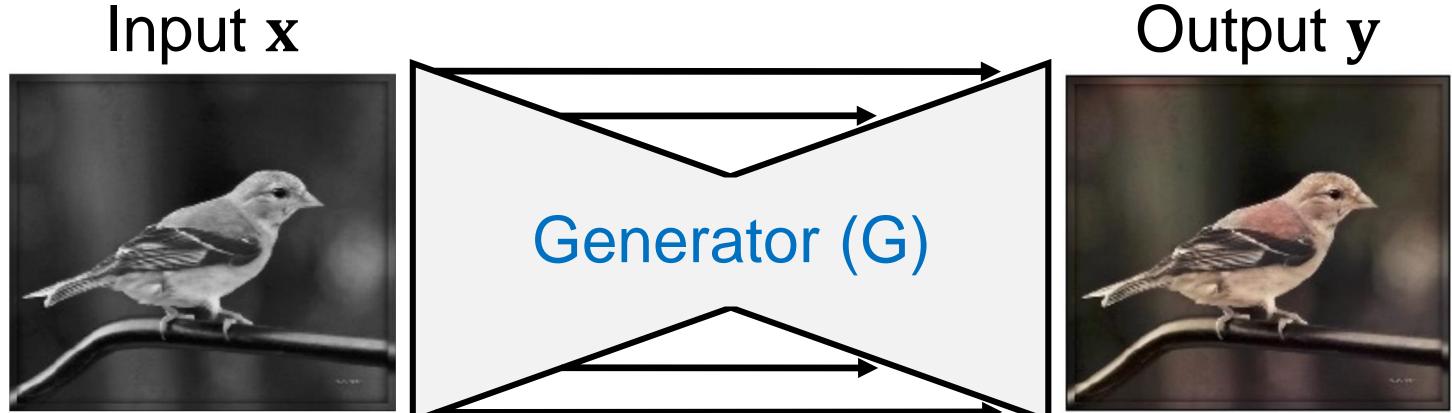
DESIGN A LOSS FUNCTION

[Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio 2014]

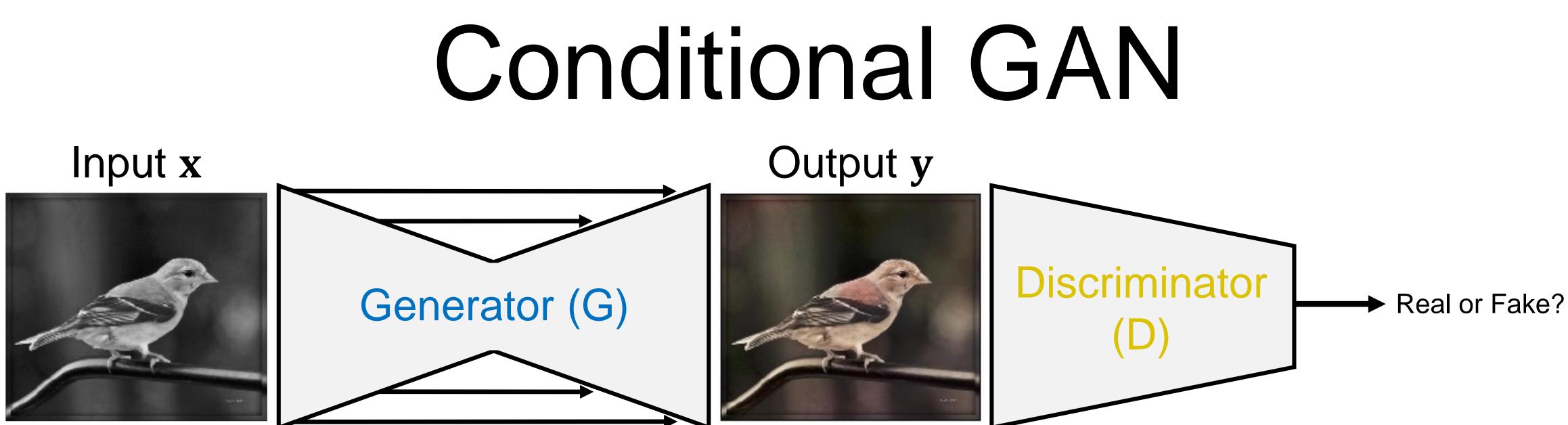


Conditional GAN

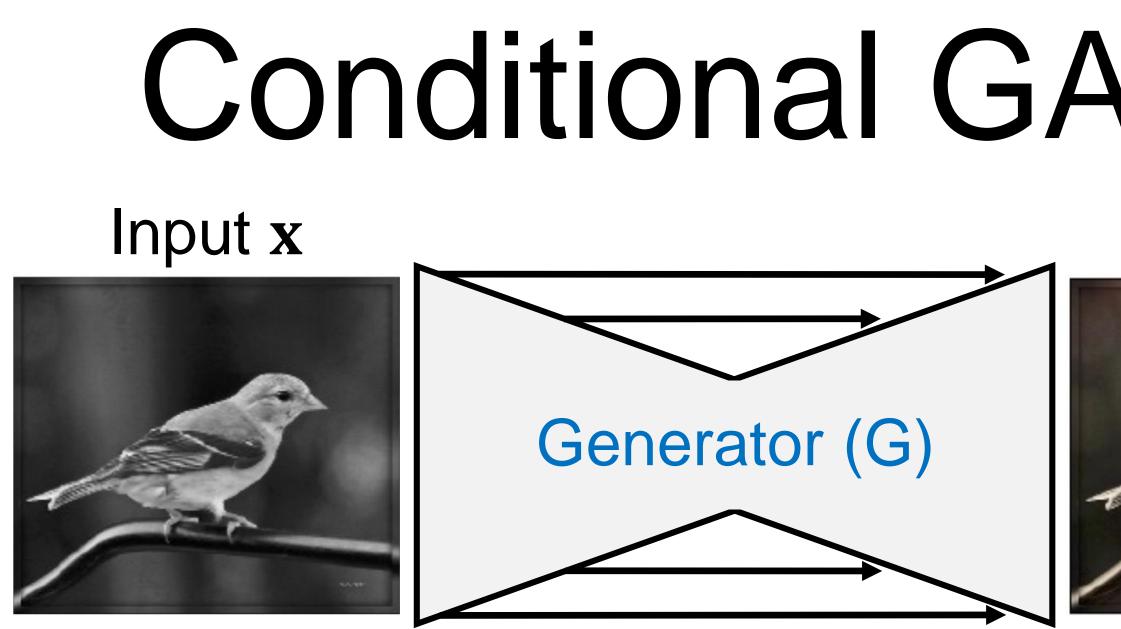
Conditional GAN



Output y



G tries to synthesize fake images that fool D D tries to tell real from fake

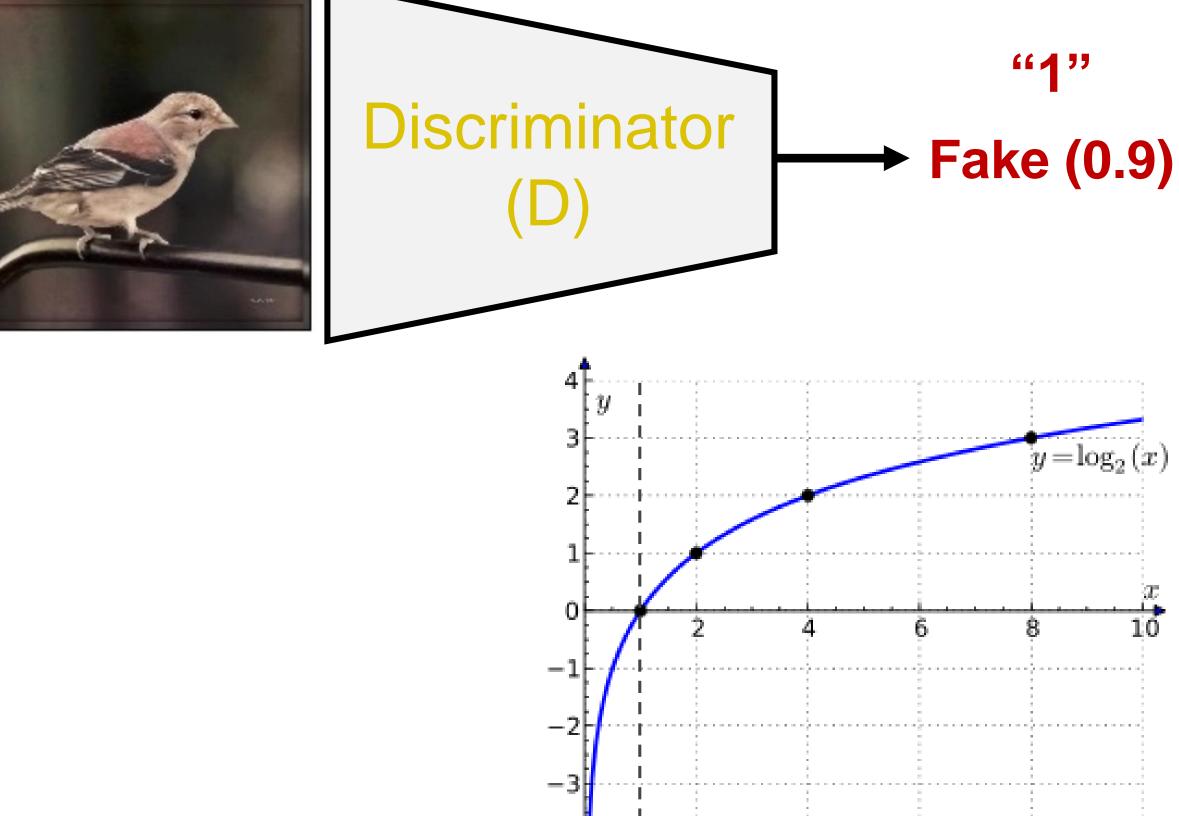


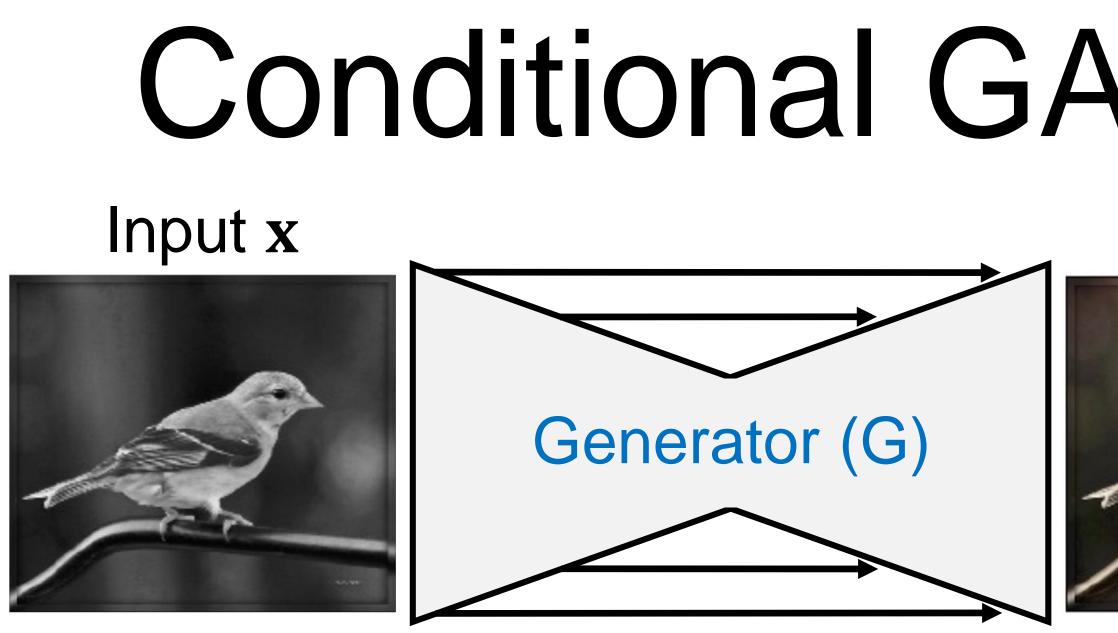
D tries to identify the fakes



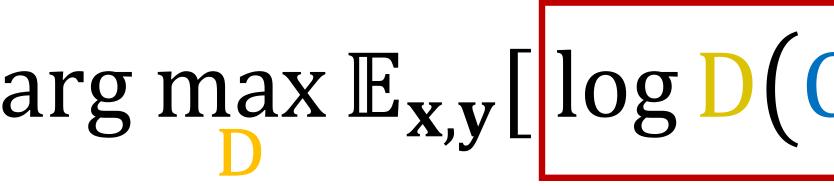
Conditional GAN (Discriminator)

Output y





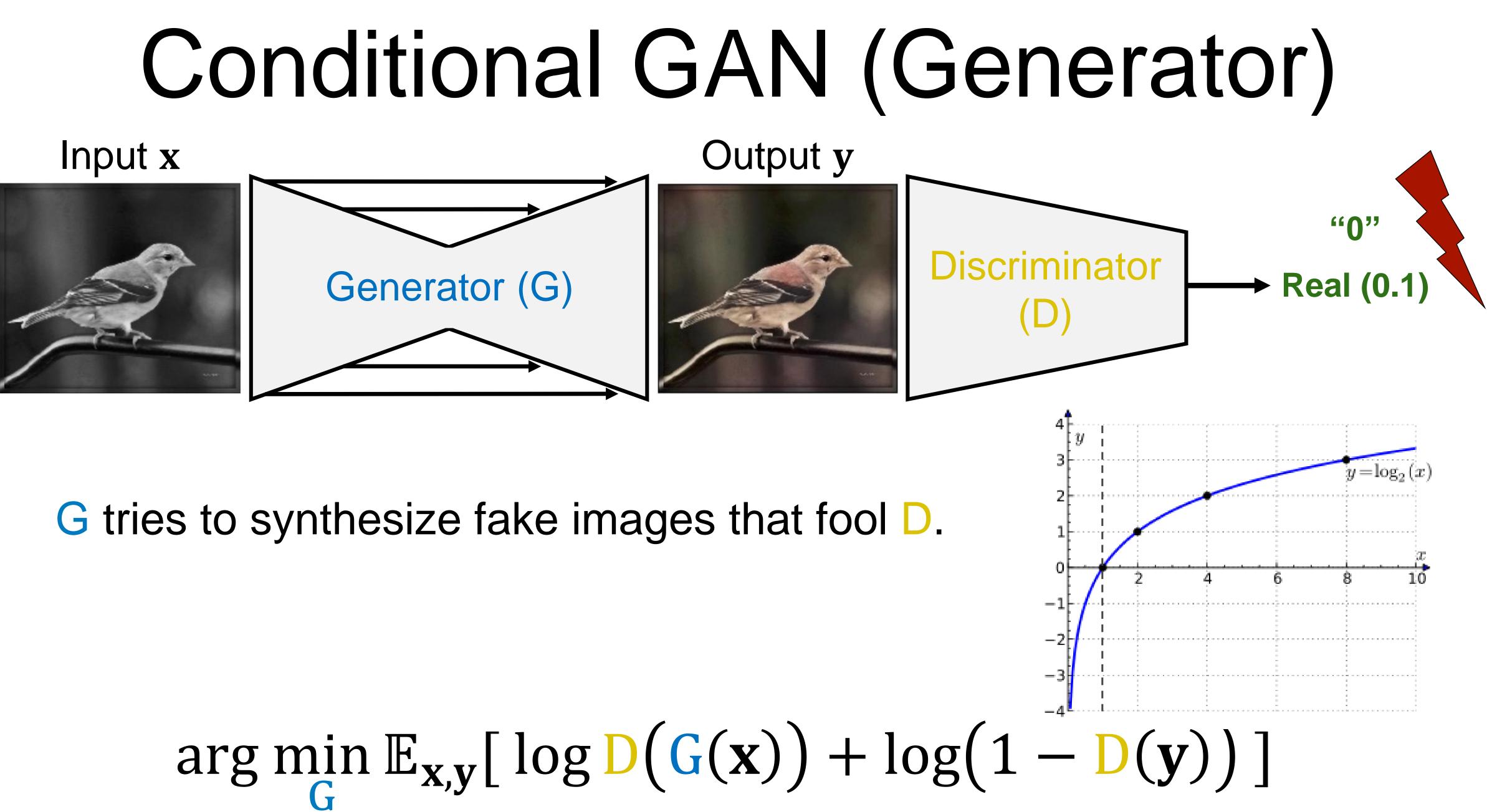
D tries to identify the fakes D tries to identify the real images

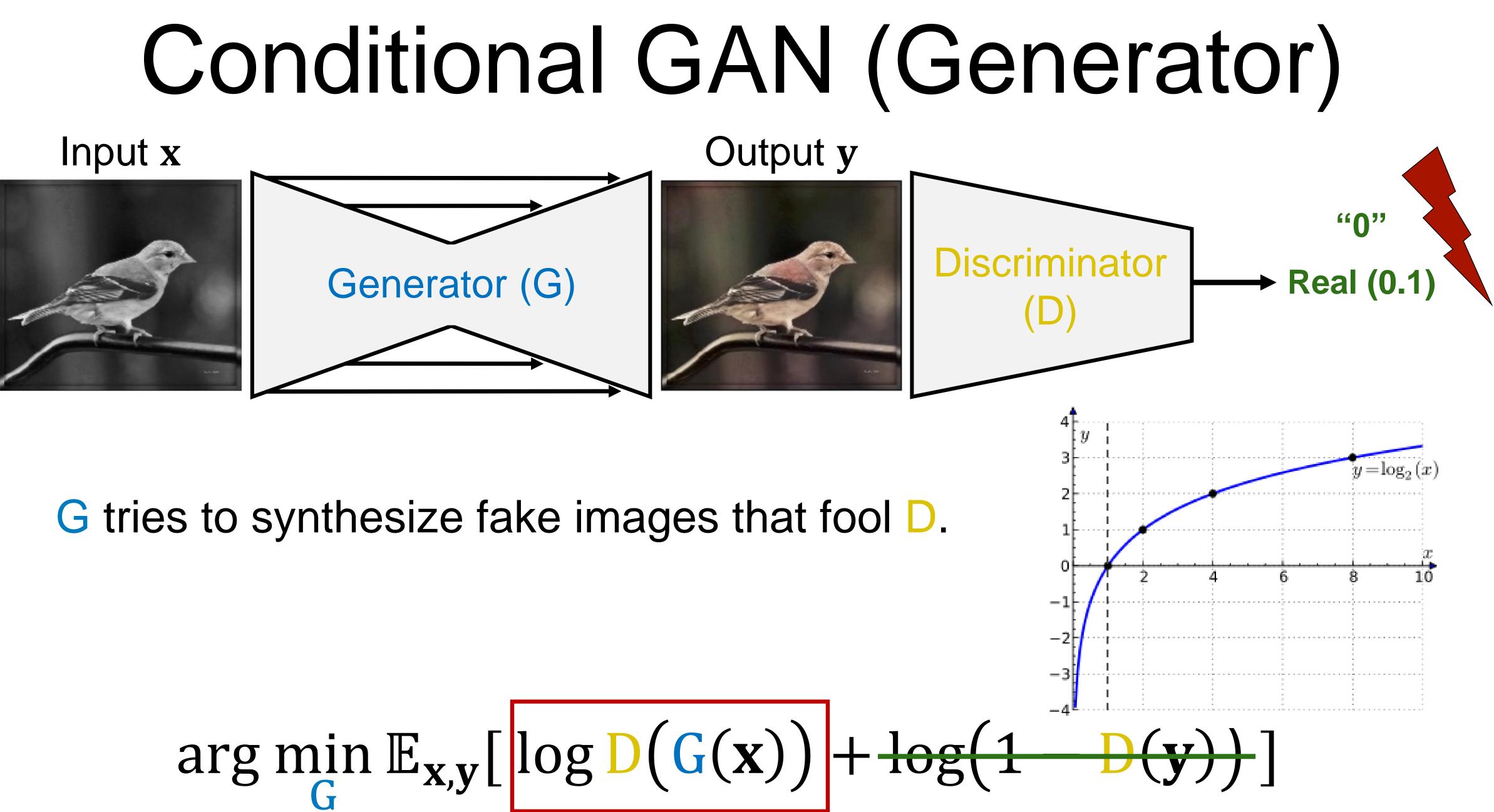


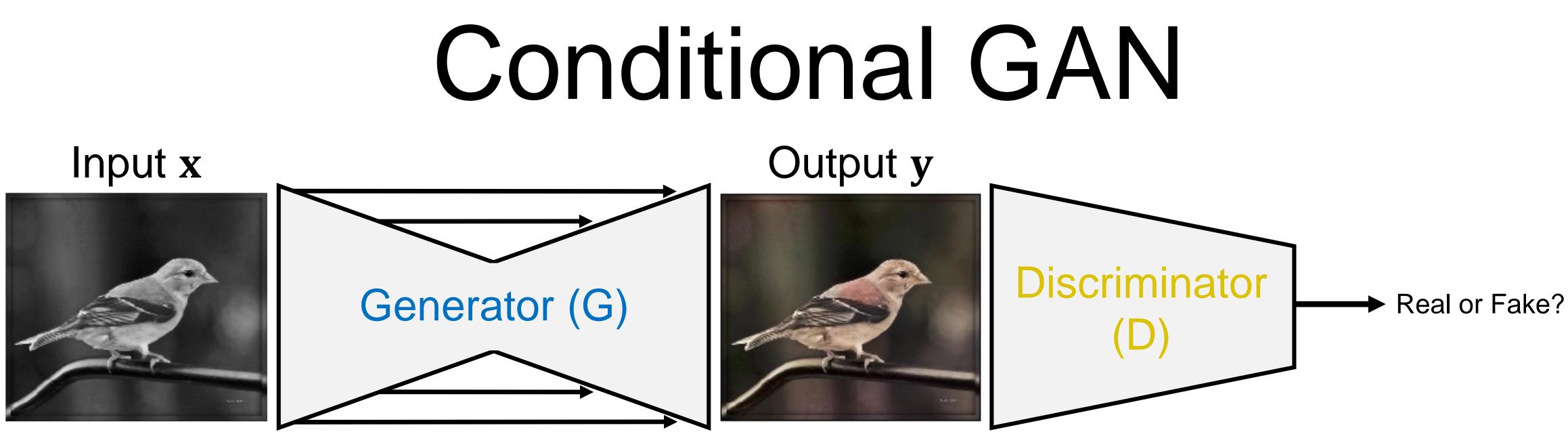
Conditional GAN (Discriminator) Output y " " **Discriminator** Fake (0.9) "()" Discriminator **Real (0.1)**

GT y

 $\arg \max \mathbb{E}_{\mathbf{x},\mathbf{y}}[\left|\log \mathsf{D}(\mathsf{G}(\mathbf{x}))\right| + \left|\log(1 - \mathsf{D}(\mathbf{y}))\right|]$

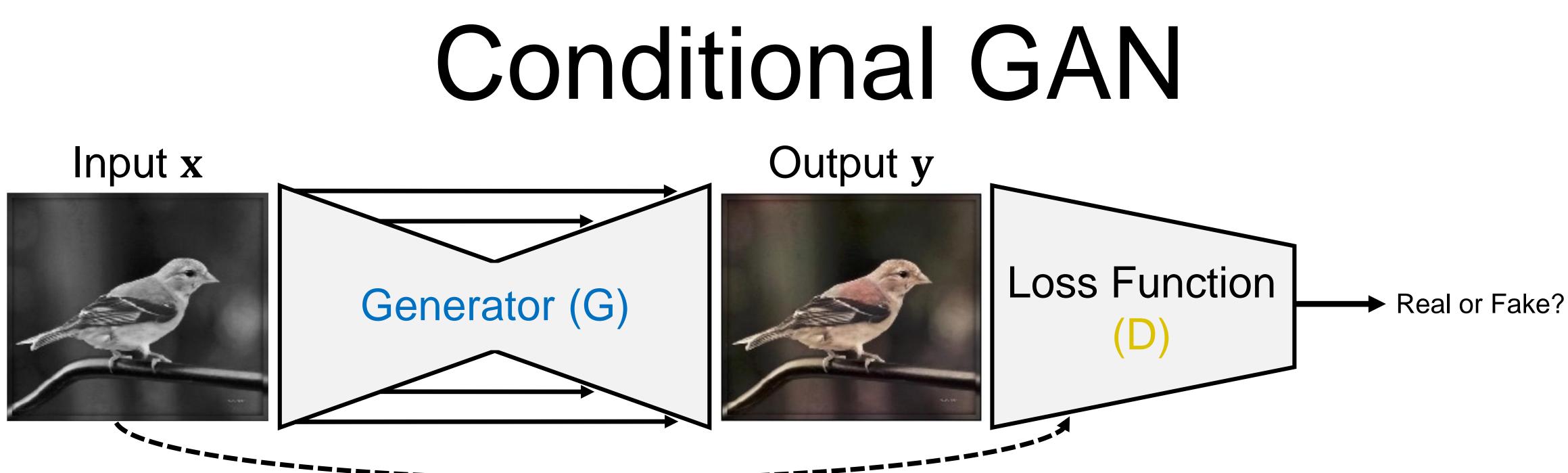




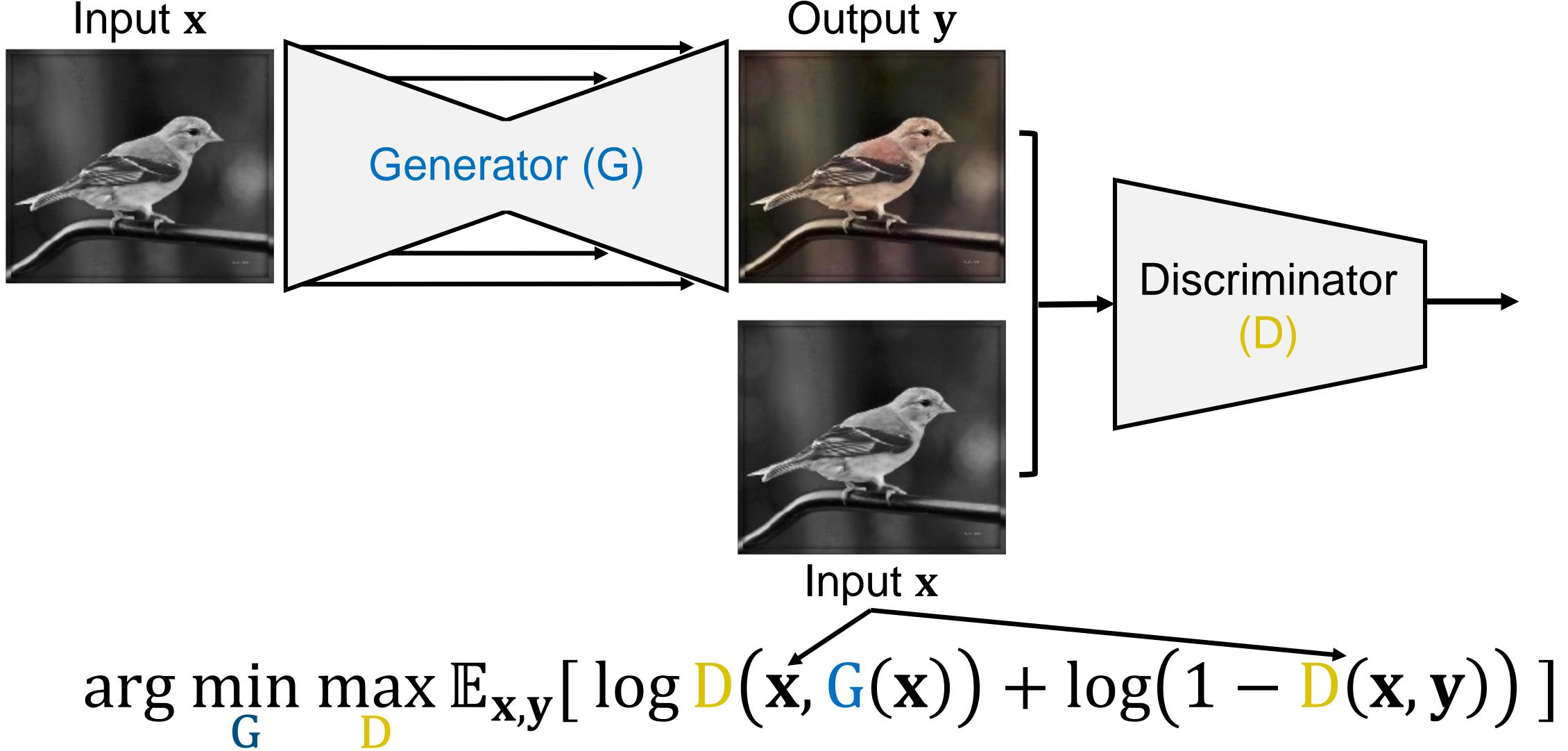


G tries to synthesize fake images that fool the best D.

$\arg\min_{\mathbf{G}} \max_{\mathbf{D}} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\log \mathsf{D}(\mathbf{G}(\mathbf{x})) + \log(1 - \mathsf{D}(\mathbf{y}))]$



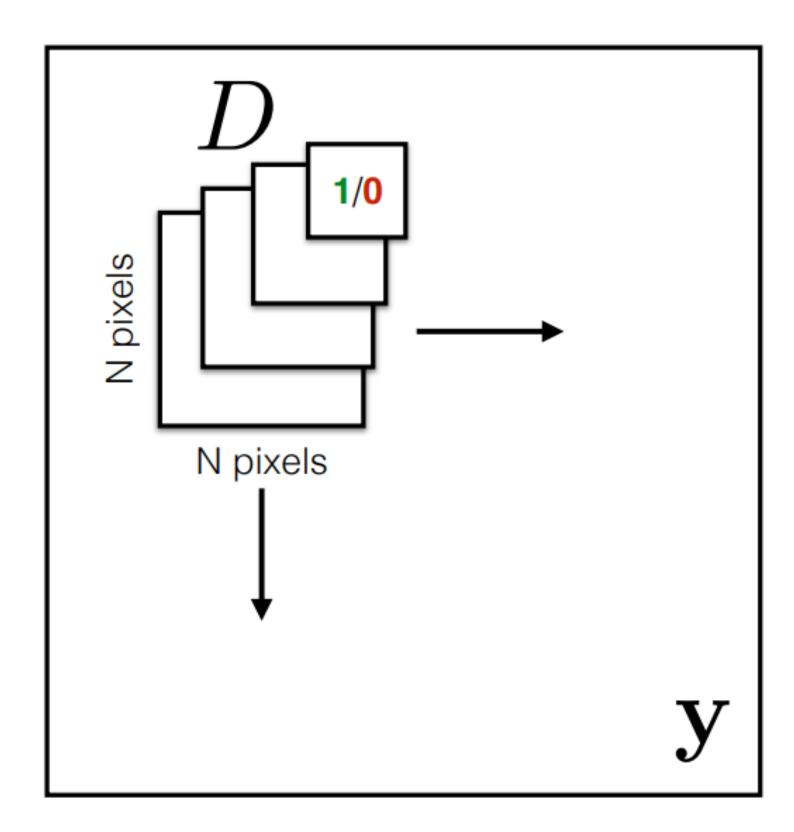
G's perspective: D is a loss function Rather than being hand-designed, it is *learned jointly*!



Conditional Discriminator

Output y

Patch Discriminator



"Rather than penalizing if the output image looks fake, penalize if each overlapping patch in the output looks fake"

> [Li & Wand 2016] [Shrivastava et al. 2017] [Isola et al. 2017]

1x1 Pixel Discriminator

Input

1x1 Discriminator

Image Discriminator

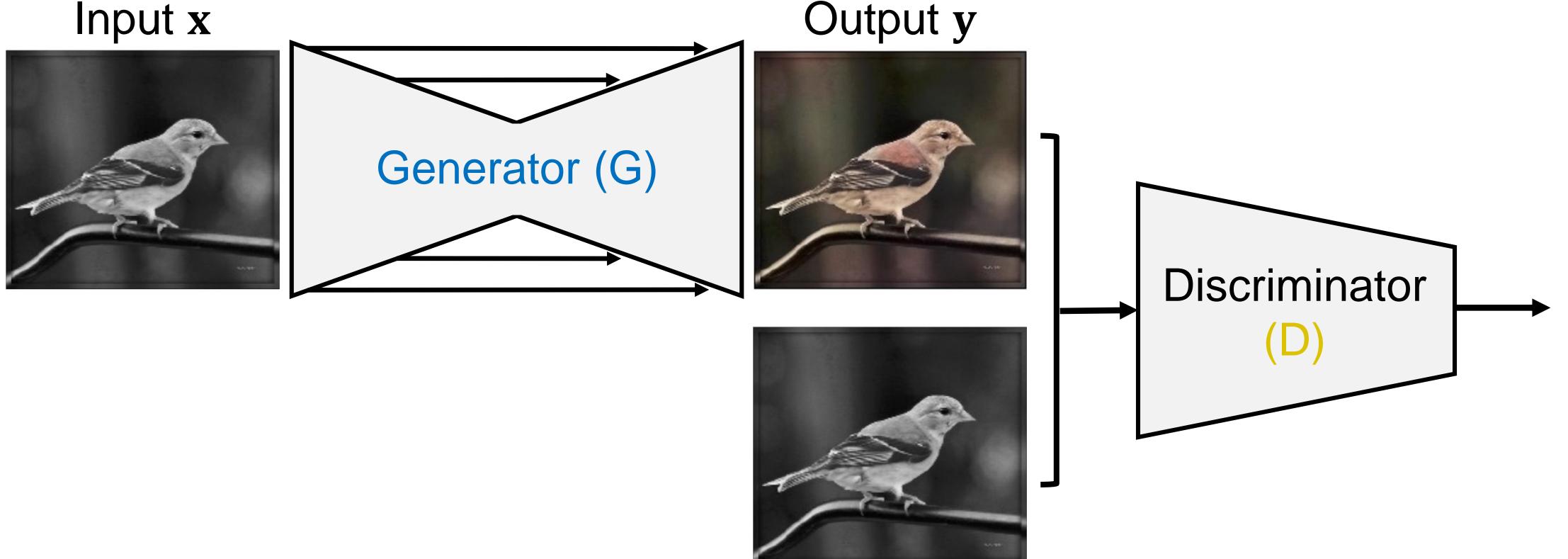
Input

1x1 Discriminator

70x70 Patch Discriminator

Input

1x1 Discriminator

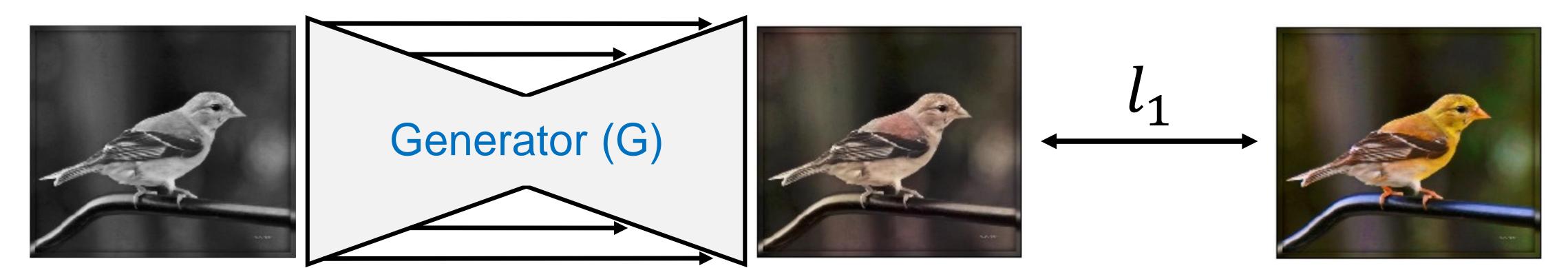


$L_{cGAN}(\mathbf{G}, \mathbf{D}) = \mathbb{E}_{\mathbf{x}, \mathbf{y}}[\log \mathbf{D}(\mathbf{x}, \mathbf{G}(\mathbf{x})) + \log(1 - \mathbf{D}(\mathbf{x}, \mathbf{y}))]$

Conditional Discriminator

Output y

Reconstruction Loss



G

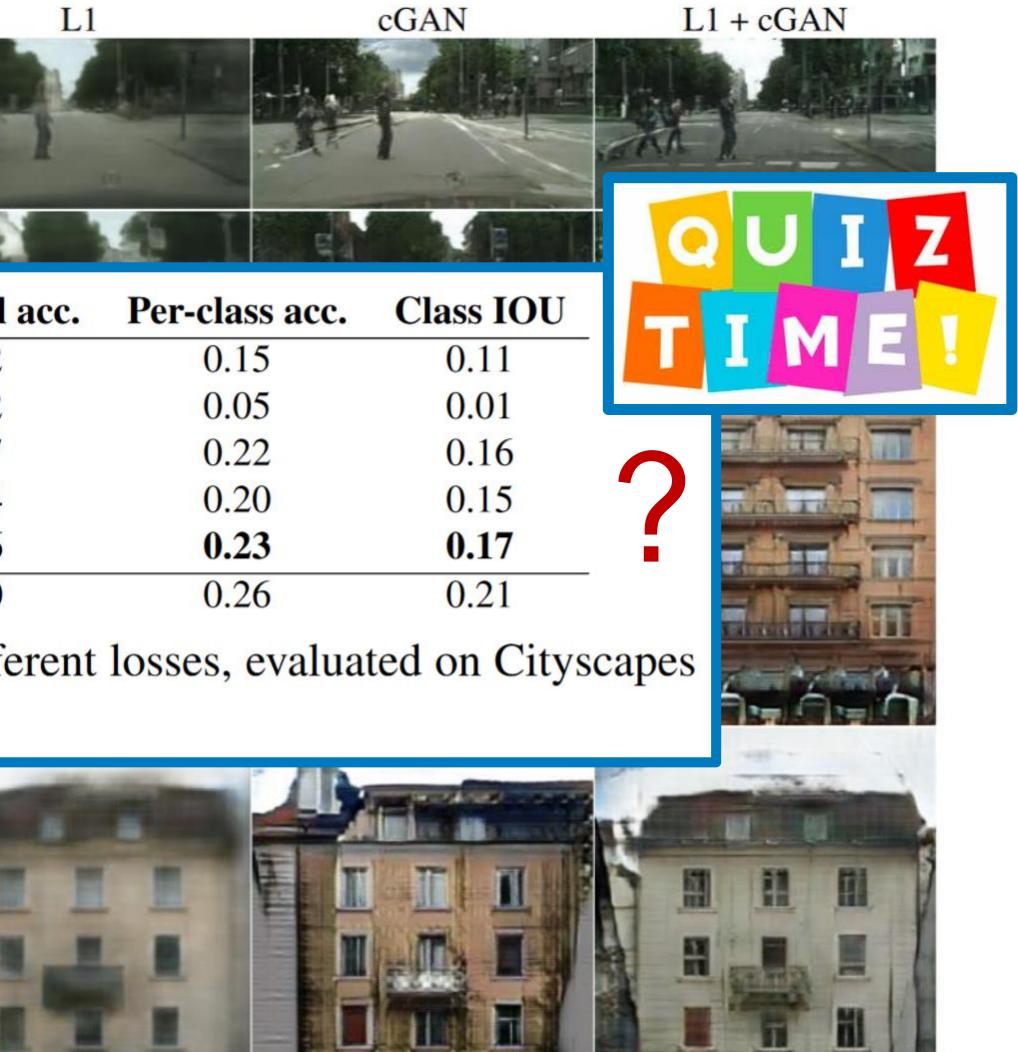
$L_{l_1}(\mathbf{G}) = \mathbb{E}_{\mathbf{X},\mathbf{Y}} \|\mathbf{G}(\mathbf{X}) - \mathbf{Y}\|_1$

"Stable training + fast convergence"

 $G^* = \arg\min L_{cGAN}(G, D) + \lambda L_{l_1}(G)$ 100

Ablation Study

Input	Grov	und truth
AMA	Loss	Per-pixel
	L1	0.42
	GAN	0.22
	cGAN	0.57
	L1+GA	N 0.64
	L1+cG	AN 0.66
	Ground	l truth 0.80
		N-scores for diffe
	labels↔phot	OS.



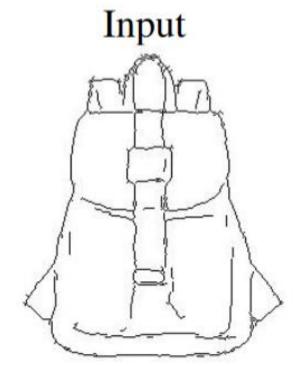
Ablation Study

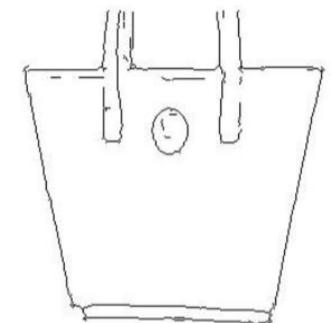
L1

Encoder-decoder

L1+cGAN

Results on the Test Split

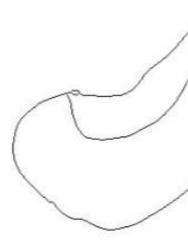




Results for Hand Drawings

Input

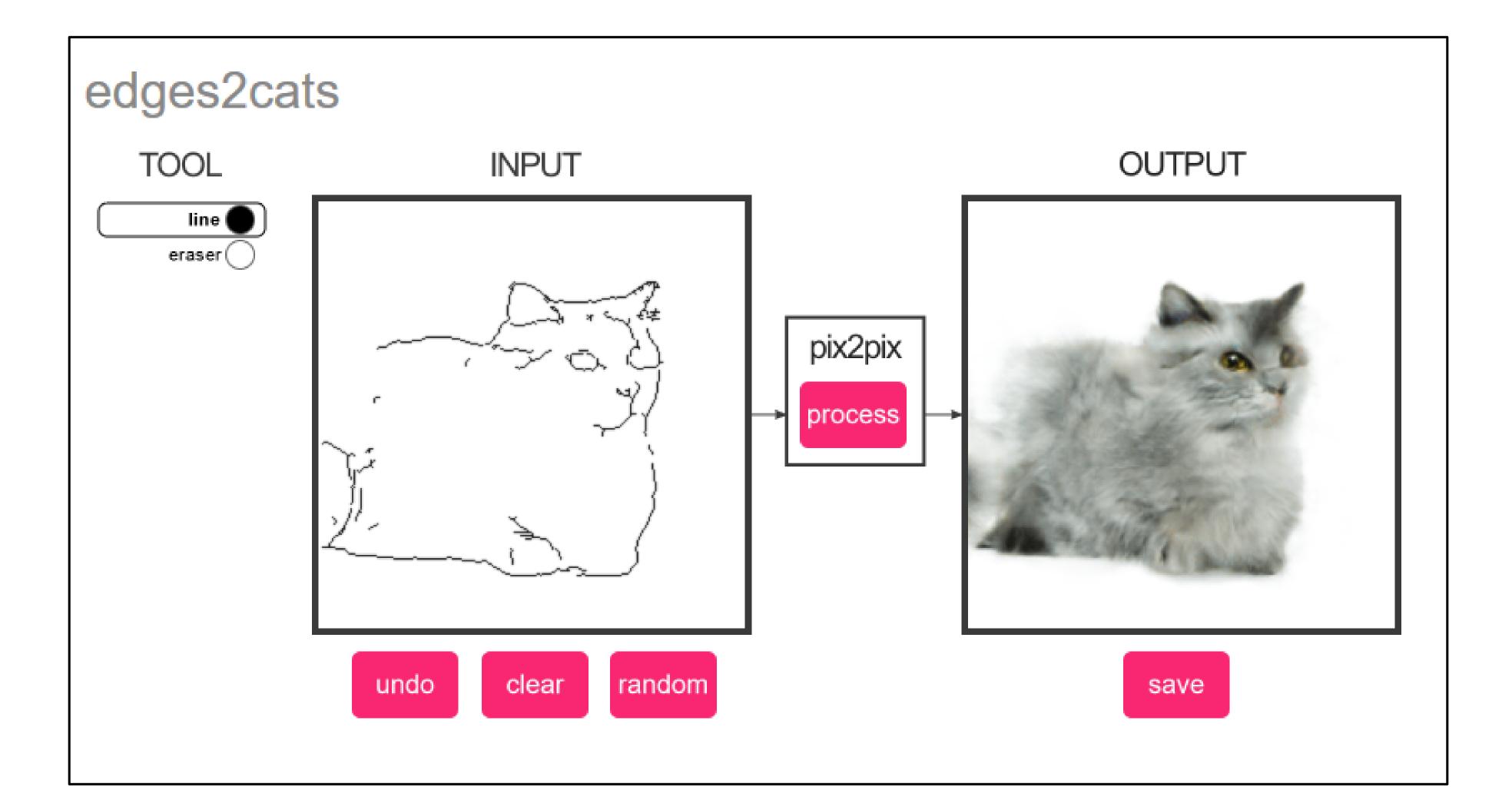
Output



Output

Output

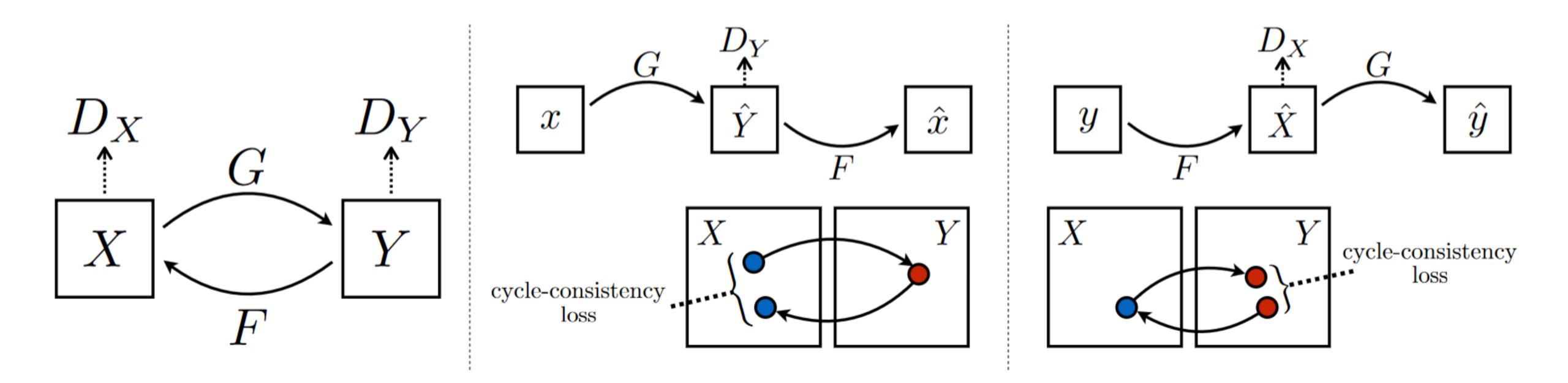
Demo: Pix2Pix



1. Paired data is required

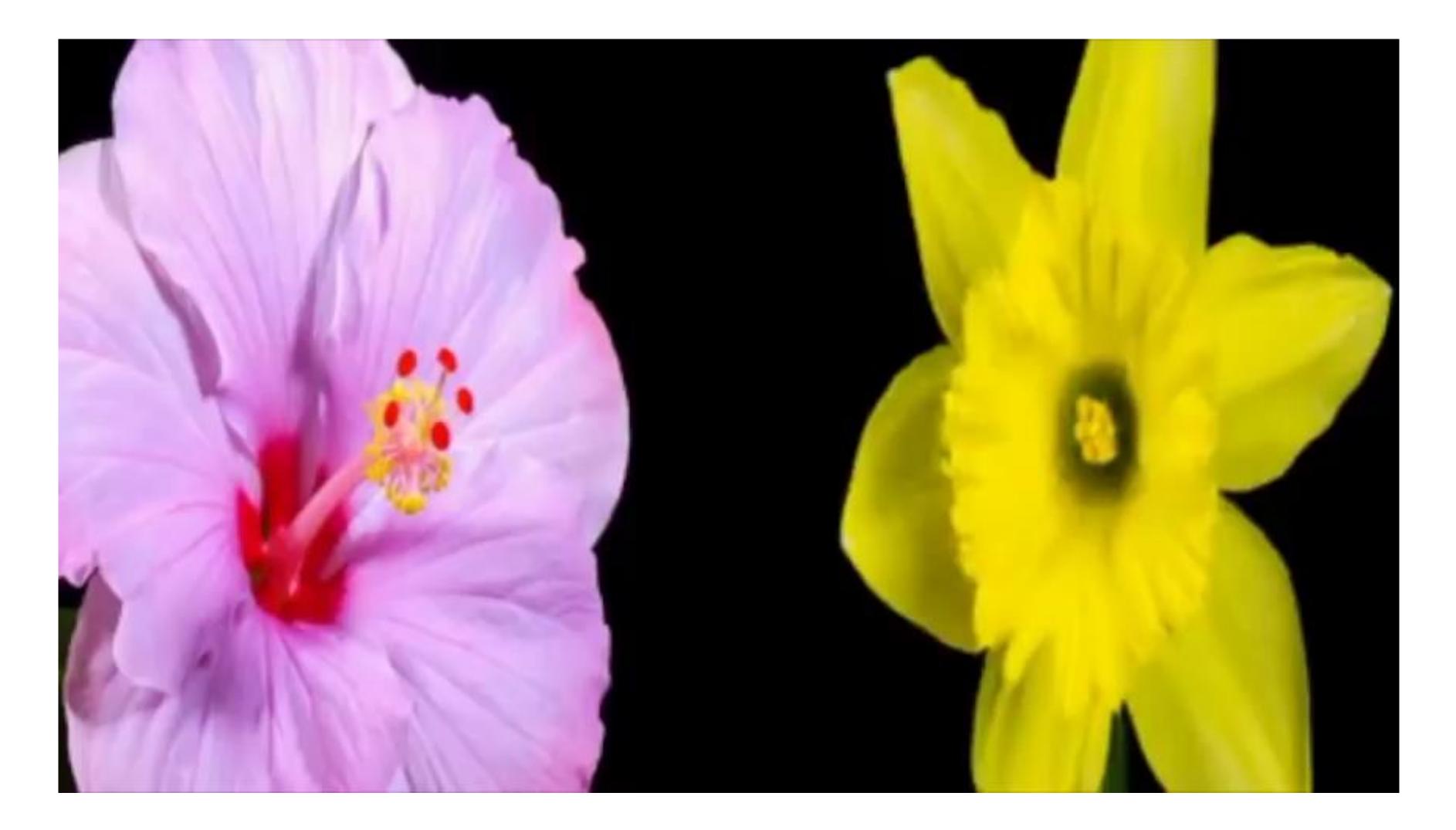
CycleGAN Unpaired X ,

Cycle Consistency



CycleGAN

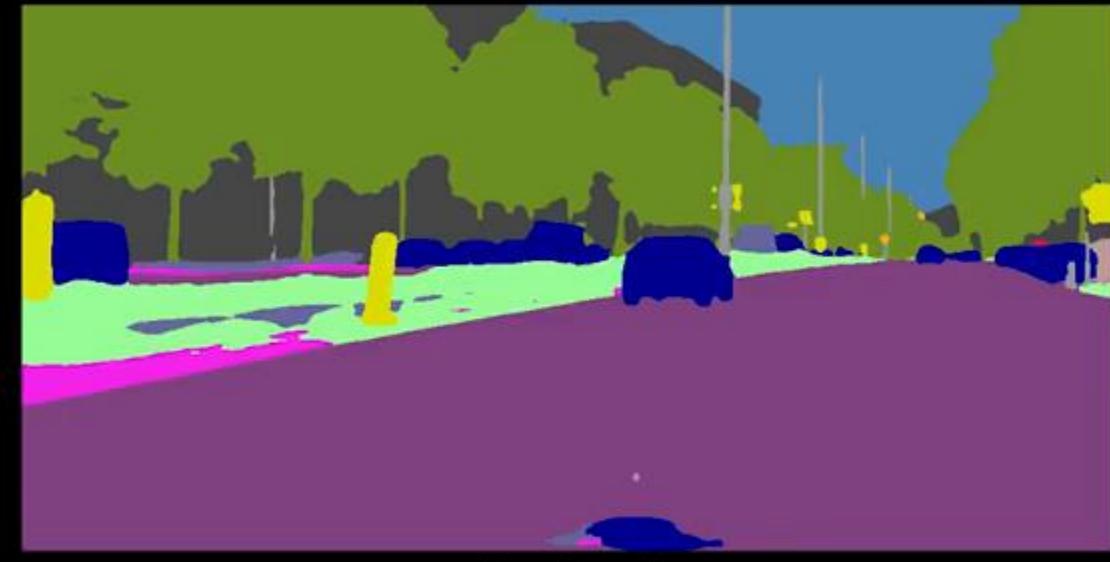
Recycle-GAN



1. Paired data is required

1. Paired data is required

2. Temporally instable if applied per-frame to a video sequence



Labels

pix2pixHD

Video-to-Video Synthesis

¹NVIDIA Corporation ²MIT

Ting-Chun Wang¹, Ming-Yu Liu¹, Jun-Yan Zhu², Guilin Liu¹, Andrew Tao¹, Jan Kautz¹, Bryan Catanzaro¹

1. Paired data is required

2. Temporally instable if applied per-frame to a video sequence

1. Paired data is required

2. Temporally instable if applied per-frame to a video sequence

3. Does not generalize to 3D transformations

DeepVoxels

Worrall et al. [2017]

Ground Truth

Tatarchenko et al. [2015]

Pix2Pix [Isola et al. 2017]

Summary

Convolutional Neural Networks

Generative Modeling

• Pix2Pix ("mapping from A to B")

$(f*g)(t) \triangleq \int_{-\infty}^{\infty} f(\tau)g(t-\tau) \, d au.$

2014

2015

(Brundage et al, 2018)

2017

edges2cats Miaur TOOL OUTPU⁻ INPUT line eraser pix2pix And the second Lini undo clear random

References

- CVPR GAN Tutorial
 - <u>https://sites.google.com/view/cvpr2018tutorialongans</u>
- CS231n

• <u>http://cs231n.stanford.edu/slides/2016/winter1516_lecture7.pdf</u>